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The hill-climbing search algorithm (steepest-ascent 

version) […] is simply a loop that continually moves in 

the direction of increasing value—that is, uphill. It 

terminates when it reaches a “peak” where no neighbor 

has a higher value. The algorithm does not maintain a 

search tree, so the data structure for the current node 

need only record the state and the value of the objective 

function. Hill climbing does not look ahead beyond the 

immediate neighbors of the current state. This resembles 

trying to find the top of Mount Everest in a thick fog while 

suffering from amnesia. (Russell & Norvig, 2010: 122) 

 

The wind was icy, and the weather, no, one couldn’t call 

it good! Thick clouds that were growing ever more gray 

and blue-black hung down deeply; the cold slopes all 

around, whose details began to be more sharply visible, 

massive and brazen nearby, on both sides losing 

themselves up in the marvelousness of ravines and 

distance, disappeared up into dark, smoky, severe gray 

fog; there was no clear view of anything at a great 

height: and yet everything was waiting up there, cliffs and 

glaciers and crashes, dark chimneys, frightful storms, 

unspeakable exertions… (Hohl, 2012 [1975]: 30) 

 

 

The Ascent of Knowledge 
 

Where is the privileged site of knowledge today? ‘Prophecies 

are no longer proclaimed from the mountaintop but from the 

metrics’, write Arjun Appadurai and Paula Kift (2020), warning 

of the emplacement of quantification at the very apex of 

knowledge production. Neither Sinai, nor Sri Pada, nor 

Olympus, nor Fuji, but Number, set on high with solid footing 

and a place of normative exception from which to speak. 

 

Our metric societies are obsessed with the precise measurement 

of deviation and error; everything is to be optimized, but to 

questionable ends. Meanwhile, the essential computability of 
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reality is taken for granted, or else the question is sidestepped 

entirely: what matters most is that an algorithm works (or is 

thought to work), less often how or why. Despite this, the new 

machine learning systems will, we are told, eventually realize 

human-level artificial general intelligence (AGI): the holy grail 

of the quantified society. Surveyed from the lofty heights of 

algorithmic rationality, entire worlds unfold as vast terrains of 

data—measurable and mappable—receding towards the 

horizon. 

 

 

 
 

Fig. 1. ‘Descent from Mount Sinai’ by Cosimo Rosselli, Sistine 

Chapel, Rome (1481–1482). The original inscription reads 

PROMULGATIO LEGIS SCRIPTE PER MOISEM (Promulgation of 

the Written Law through Moses). Moses, draped in gold, receives the 

Ten Commandments from God atop Sinai, the reception of a sacred 

symbolic code linked with the apex of a mountain: the summit acts as 

an interface with the absolute (Rosselli 1481). 

 

 

While the drive towards ever more precise metrics and more 

powerful machine learning systems may have displaced 

physical mountaintops and introspection, dialogue, or divine 

revelation as favored grounds upon which to erect truth claims, 

the potency of the mountain as cultural symbol and ideological 

backdrop has hardly dissipated. Judging by the language that 

machine learning practitioners use to describe how today’s 

most advanced neural networks are themselves produced, or 

‘trained,’ the mountain landscape remains as compelling and 

potent an emblem as ever. Transformed into an image and 

metaphorical framework used to intuit and understand what 
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happens within an opaque algorithmic learning process, the 

mountain persists as a ghostly terrain upon which machines are 

imagined to learn. 

 

This paper takes as its object of analysis a recurring allegory 

about a lone hero’s journey across a mountainous landscape—

an allegory which appears again and again in machine learning 

discourses as an explanatory trope and conceptual tool. 

Allegorical passages like the one which opens this paper, from 

Stuart Russell and Peter Norvig’s standard introductory 

textbook Artificial Intelligence: A Modern Approach, are often 

deployed by practitioners to describe the functioning of a 

particularly important yet difficult to predict algorithmic 

approach: gradient optimization, or simply the gradient method. 

 

The gradient method, alongside the availability of massive data 

sets and increased computing power, has been critical to recent 

breakthroughs made in machine learning research: the method 

and its secondary derivations are the de facto means by which 

the vast majority of today’s machine learning systems are 

trained (Ruder, 2017: 1). ‘If you had to throw out your entire 

machine-learning toolkit in an emergency save for one tool’, 

Pedro Domingos extols, gradient optimization ‘is probably the 

one you’d want to hold on to’ (2015: 109). ‘Over the last 

decade, a single algorithm has changed many facets of our 

lives’, opens a recent gradient optimization paper, referring to 

one of the most popular implementations (Parker-Holder et al., 

2020: 1). If the recent explosion of research and hype about 

machine learning, and Deep Neural Networks (DNN’s) in 

particular, has led to these terms being used metonymically to 

stand in for the entire field of AI research as a whole, then it is 

no stretch to consider gradient optimization to be the 

algorithmic kernel at the heart of much of this hype. Without 

the gradient method and its allied techniques, there would be no 

‘AI revolution’ in sight. 

 

This paper is less about the technical efficacy of the method 

itself, however, and more about how the method is 

communicated and mediated through allegorical language and 

visualizations which install the mountain landscape once again 

as the privileged site of learning, knowledge, and improvement. 

The allegorical stories which are used to explain the method, 

and which are the main focus of this paper, exhibit a 

remarkable consistency: gradient narratives, as I term them, re-

present complex algorithmic processes in explicitly spatial, 
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embodied, and narrative terms. Most of today’s computer 

science students come to understand how gradient optimization 

works through just such metaphorical constructions; these 

quasi-heroic tales thus play an important educational and 

heuristic role in the continuity of machine learning as a 

sociotechnical practice and economic force. As a coherent body 

of discourse and set of visual conventions, gradient narratives 

and the images they accompany constitute integral elements in 

the infrastructural and mythic scaffolding that underlies 

contemporary data capitalism. Divine knowledge has its 

summits; gradient knowledge has them too. 

 

In the machine learning field, gradient narratives are understood 

to be useful because the processes they describe are often 

difficult to interpret. As Sebastian Ruder puts it, ‘[g]radient 

descent optimization algorithms, while increasingly popular, 

are often used as black-box optimizers, as practical 

explanations of their strengths and weaknesses are hard to come 

by’ (2017: 1). As this problem of interpretation and constitutive 

doubt has become more widely recognized, it has led to charges 

of ‘alchemy’ from insiders and outsiders alike (Hutson 2018).
1
 

Insofar as gradient narratives present the process of machine 

learning as a story or image about a protagonist navigating a 

landscape, they offer practitioners a ready means for grasping 

these processes in intuitive, anthropomorphized, and culturally 

familiar terms. Visualized, the results can be immensely 

compelling, conveying an immediate sense of ‘how we got 

here’—with ‘here’ signifying not an actual location in physical 

space, but the outcome of a training process, the behavior of an 

algorithm, and a particular, optimized configuration of the 

system’s internal variables and architecture. 
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Fig. 2. A visualization of the ‘route’ followed by a gradient 

optimization algorithm across a loss or error surface as it is trained 

(Amini, 2019). In this example, the objective of training is to arrive at 

the lowest rather than the highest point on the landscape, the ‘place’ 

(machine state) where error is minimized, and thus the state in which 

the learning model is thought to be maximally optimized for the data 

set. 

 

 

The basic contours of gradient narratives are familiar: learning 

is a journey; one’s objective is a destination. The protagonists, 

which stand in for machine learning models undergoing 

optimization, have clear objectives: to reach either the highest 

or the lowest point on the surrounding landscape (gradient 

ascent or descent, respectively). Such points signify an ideally 

optimized machine state; the purpose of gradient optimization 

is to iteratively find one’s way to such a desired high or low 

point by traversing the landscape, step by step. The protagonists 

in these narratives, however, are typically faced with 

improbable odds of success, reflecting the constiuitive 

uncertainty of the very processes they describe. It might be easy 

to get sidetracked by a false summit, stuck on a ridge, or 

disoriented on a wide plateau. Due to this constitutive 

uncertainty, the question of how an algorithmic protagonist 

should reach its objective (thus attaining a state of maximal 

optimization) is a question of intense ongoing study in the field, 

frequently posed in the same metaphorical language of 

landscape and navigation. In practice, however, the problem is 

usually addressed through a combination of precedent, trial and 

error, superstition, and chance. 
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The experientially grounded narratives and visualizations this 

paper analyzes provide practitioners interpretive frames through 

which to understand these conditions of uncertainty and grapple 

with the abstract mathematical relationships in play. Through 

them, practitioners come to terms with what it means to ‘fit’ a 

model to reality and what it means, ultimately, to optimize and 

to ‘learn’. Thrown into the proverbial shoes of the personified 

algorithm as it traverses a multi-dimensional error or loss 

surface replete with peaks, valleys, plateaus, saddle points, 

ridges, canyons, and cols, practitioners are better able to 

identify with the workings of an often unpredictable and opaque 

nonhuman process, coming to grips with its triumphs and 

failures in heroic terms.
2
 But lost on foot, few question the 

larger structure and epistemic status of the imagined world that 

lies before them, nor ask what kinds of assumptions or 

oversights such narratives might carry with them or obscure. 

 

Much ink has been spilled addressing the constitutive role of 

language, particularly metaphor, in the social production of 

science; likewise, visualization has long played an important 

role in the conception and communication of abstract theories, 

scientific or otherwise. ‘The intuitive appeal of a scientific 

theory’, write George Lakoff and Mark Johnson, ‘has to do 

with how well its metaphors fit one’s experience’ (1980: 19). 

For Donna Haraway, in her early work on the shaping of 

embryos, ‘[m]etaphor is a property of language that gives 

boundaries to worlds and helps scientists using real languages 

push against those bounds’ (2004: 10). And for Philip Agre, 

reflecting on AI in particular, ‘[e]ach technique is both a 

method for designing artifacts and a thematics for narrating its 

operation’ (1997: 141). Narratives thus give form to the 

technoscientific worlds we inhabit, just as they give working 

practitioners concepts to experiment with, build upon, and tear 

down. 

 

Here, I offer a genealogy and analysis of contemporary gradient 

narratives, both as constitutive elements in the production of 

machine learning models and as ideological reflections of the 

social milieus in which they circulate. The essay unfolds in two 

stages. First, I introduce the gradient method and sketch the 

history of its crystallization as an optimization technique by 

following three intertwined influences—what I refer to here as 

pathways. I describe the algorithm itself, dwell on the 

emergence of early scientific and mathematical models taking 

their inspiration from mountain landscapes, and touch on the 
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importance of digital computation to the broad adoption of 

optimization methods. In this genealogy, I focus on a series of 

frequently cited paradigmatic models and examples which have 

been influential to later research and give texture to today’s 

machine learning field. My intent in choosing these examples is 

not to establish an authoritative history or to install a teleology, 

as though the pathways followed were somehow natural or 

inevitable; taking a cue from mountain landscapes themselves, I 

instead propose thinking about each example as something like 

a cairn or waypoint marking one of many possible trajectories 

across open terrain. Analyzing a series of historical reference 

points and their links in this manner, this essay contributes to a 

growing understanding of machine learning’s prehistory by 

tracing the roots of some of its contemporary stylistic, narrative, 

and visual conventions.
3
 

 

After mapping some of the historical trajectories that inform 

machine learning’s contemporary mythology, I then ask how 

and why the mountain mise-en-scène, as a particular kind of 

landscape rich in cultural connotations and ideological 

associations, has persisted with such potency at the heart of 

data-driven knowledge production. While many alternative 

metaphors have been used over the years to describe gradient 

optimization, none has yet saturated the discourse so thoroughly 

or seriously challenged the mountain’s dominance as 

explanatory trope.
4
 As W. J. T. Mitchell has argued, a 

landscape is a medium, a ‘social hieroglyph’ and an expression 

of value, which functions by ‘naturalizing its conventions and 

conventionalizing its nature’ (1994: 5). What, then, are we to 

make of today’s technical machine learning literature, haunted 

as it is by metaphorical peaks and valleys shrouded in fog? 

Why are today’s deep learning algorithms always said to be 

climbing towards summits or descending ridges in search of 

low points? What, in other words, is being conventionalized or 

naturalized, beyond a superficial aesthetics, when we 

continually find the mountain at work in the machine? 

 

The answer to these questions, I argue, is bound up not merely 

with the rehearsal of familiar religious or romantic imagery, the 

recapitulation of a Platonic metaphysics of ascension towards 

truth, or the crude projection of that which is materially 

disappearing into the sphere of the symbolic (although it is true 

that there are precious few unclimbed peaks remaining and 

entire mountain ranges are being strip-mined into oblivion). 

There is also, I argue, something like an ethos or orientation 
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which is common to both cultures of machine learning and the 

mythos of modern mountaineering. Beyond numerous obvious 

differences, it is an orientational congruence, a shared dream, 

that accounts for the smooth transposition of stories about 

scaling peaks and navigating treacherous terrain onto technical 

explanations of machine learning and AI. I return to these 

questions in the latter part of this paper. 

 

 

A Romance of Many Dimensions
5
 

 

A comprehensive history of optimization would fill volumes. In 

what follows, I emphasize the confluence of three constitutive 

pathways that collectively ground gradient optimization as it is 

practiced today: the refinement of a mathematical algorithm, 

the articulation of a set of discourses and visual conventions 

about landscapes, and the development of a technology for 

performing calculations. The first pathway, on the concept of a 

gradient and the gradient algorithm itself, introduces the 

purpose and function of the method and briefly surveys the 

history of its invention and crystallization as a standard 

optimization procedure in mathematics. The second pathway, 

on landscape and navigation, traces how metaphors and 

visualizations of landscape were deployed and conventionalized 

across various scientific disciplines in the late 18
th

 and early 

19
th

 centuries, such that their eventual uptake in optimization 

contexts appeared not only useful but natural. The third 

pathway, on computation and uncertainty, traces how the 

adoption of digital computers drastically enlarged the scope of 

applications which could be tackled with the gradient method, 

while also exacerbating the epistemological problems which 

still haunt its use. Afterwards, once all three pathways have 

been traced, I return to the question of the mountain mise-en-

scène and its contemporary cultural and ideological dimensions. 

 

 

I. Gradient 

 

The first pathway I trace concerns the gradient method as a 

concept and as an algorithm. Both a straightforward 

mathematical procedure and a complex and unstable cultural 

object, the gradient method has proven eminently translatable 

between contexts. Distilled, it is an incredibly simple 

mathematical operation, powerful because of its simplicity 

when coupled with a machinic capacity for repetition. Its logic 
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hinges on the more fundamental concept from which it derives 

its name: the gradient. 

 

A gradient is any gradual transition or difference along a 

continuum. When mathematicians speak of gradients in a 

geometrical context today, they are usually speaking of a 

measure of a slope or angle: a derivative or a rate of change. 

Movement along any wave, curve, or smooth topological 

surface can be construed in terms of gradients, and these 

continuous forms are the grounds upon which the gradient 

method operates. While often implemented using digital 

computers today, the gradient method itself must be understood 

in distinction to methods that deal primarily with discrete or 

discontinuous phenomena, those in which the transition 

between two points happens across an irreconcilable break or 

gap (think, for example, of the difference between a sine wave 

and a square wave; the latter would repel the gradient method). 

This means that where the gradient method is used, the data and 

underlying relations are assumed to be essentially continuous, 

or else may be treated as such. 

 

Beyond mathematics, however, the etymology of the term 

reveals an ambivalent double meaning. Gradient derives from 

the Latin gradus, meaning degree, but also step or stride (OED, 

2020). The English term grade retains something of this 

ambivalence, referring both to an angle of incline, as in a road 

grade, and to a discrete stage or position in a hierarchy or 

procedure, as in levels of education. This double meaning 

persists, too, in how the gradient method functions: it is a 

method used to make iterative, discrete changes to a model, 

shifting that model’s output along a continuous line or surface 

step by step.
6
 

 

The basic premise of the gradient method as it pertains to the 

optimization of mathematical models goes something like this. 

Say I have a function with a number of variables, mapping a set 

of inputs to a set of outputs, that I want to behave in a particular 

way. If I can compare the model’s actual output against the 

desired output, I can then calculate the model’s loss or error 

rate: a measure of the difference between what I want the model 

to return and what it actually returns. The idea behind 

optimization, today a mathematical field all its own, is to find 

reliable methods for progressively lowering a function’s error 

rate, or making the model ‘fit’ the desired output or data set as 

closely as possible. This is easier said than done: if the data are 
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noisy and the model itself complex, it can be difficult to know 

which variables to change, and by how much. I could proceed 

by pure trial and error, plugging in variables at random, and this 

might work if I have only a few parameters and inputs. But 

imagine a situation with thousands of such variables, or 

millions, and mere trial and error quickly becomes untenable. 

 

In these situations, having a systematic means of iteratively and 

gradually changing the variables in a function becomes a 

tremendous boon, and this is what optimization algorithms do. 

As such, most are relatively uncomplicated, one simply needs 

to run through them many times. Ideally, incrementally 

changing a function’s starting variables step by step would lead 

to the function eventually yielding the desired result—a state 

called convergence, wherein the desired and actual outputs 

coincide. If this can reliably be accomplished by an algorithmic 

system, then it matters less what the starting state of the model 

is or what the starting variables should be, any numbers will do, 

and the training algorithm will take care of the rest. This is 

more or less how training a machine learning model works 

today, effectively equating the term learning with that of 

optimization: error reduction as pedagogical paradigm. 

 

In the geometrical interpretation of optimization, it is common 

to graph the error rate as a curved line or as a n-dimensional 

surface, with each dimension corresponding to a variable in the 

function. A model with thousands of variables would thus have 

thousands of dimensions, but for the purposes of visualizing 

and intuitively grasping the process, these many dimensions are 

often reduced and visualized in terms of only two or three. 

While numerous variations and implementations of the basic 

gradient method exist, each with particular characteristics and 

use cases, the underlying approach remains fundamentally the 

same: ‘climb’ to the highest state of optimization (gradient 

ascent or ‘hill-climbing search’) or ‘descend’ to the state of 

lowest error (gradient descent), in either case following the 

steepest angle of the line or surface. The ‘highest’ point would 

signify a state of ideal optimization or maximal accuracy; 

inverted, the ‘lowest’ point would correspond to the model 

which produces the lowest rate of error. In this context, the 

difference between ‘climbing’ and ‘descending’ is merely a 

matter of multiplying by -1; today it is a question of convention 

or preference which vertical orientation practitioners choose, 

although as the genealogy I undertake below makes clear, most 

historical examples have tended to favor ascent. 
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The history of the gradient method itself, before digital 

computation, is winding and uneven, proceeding in fits and 

starts. As is often the case in the history of mathematics, several 

people seem to have developed some version of the gradient 

method independently, apparently unaware of similar work 

undertaken elsewhere by others. Despite already existing for 

almost a century, it was only in the 1940s that anything close to 

a definitive story was proposed, when the method’s spread 

spurred newfound interest in its origins. Various other lineages 

have since been proposed, seeing continual revision as new 

overlooked figures are recognized and written into history 

(Petrova & Solov’ev, 1997). 

 

Today, the method’s first formalization is usually credited to 

Augustin-Louis Cauchy in an obscure passage of his 1847 

published works. There, it is proposed as a means of 

approximating the orbits of stars. Though Cauchy wrote that he 

would elaborate upon the method at a later date, he never did, 

and so his early contribution was, until the 1940s, frequently 

overlooked (Cauchy, 1847; Lemarechal, 2012; Petrova & 

Solov’ev, 1997). Indeed, for the first century after its 

formalization, Cauchy’s method was marginal in every sense: 

infrequently applied, little recognized, ‘rediscovered’ from time 

to time only to be forgotten once again and fade into obscurity.
7
 

 

This changed during the Second World War and the years 

following, when the technique—soon being referred to as ‘hill-

climbing’ or the ‘method of steepest-ascent’—was suddenly 

being deployed across a staggering range of fields. In 1944, 

while working for the U.S. Army at the Frankford Arsenal’s 

Fire Control Design Division, logician Haskell Curry noted that 

while the method remained largely unknown to authorities in 

numerical computation, it was already ‘standard procedure’ in a 

number of other, mostly applied, contexts (1944: 258).
8
 The 

purpose of Curry’s oft-cited paper was corrective and synthetic: 

to provide a summary and proof of the technique (something 

Cauchy had not provided), emphasizing its practical and 

applied relevance while noting that ‘[t]his method is not new’ 

(1944: 258).
9
 

 

Curry’s emphasis on the method’s practical utility is 

unsurprising given his wartime research on fire control. While 

he did not provide visualizations, Curry’s paper had already 

begun using the topographical and embodied language of 

valleys, peaks, and steps that has since become second nature: 
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‘There is evidence that in practical problems these curves 

follow the natural valleys of the surface, so that each step 

brings us further toward the goal’ (Curry, 1944: 261).
10

 The 

immediate goal in this case was shooting down enemy aircraft, 

but Curry understood that the underlying method could, in 

principle, be applied to any problem that could be posed in 

terms of optimization along a continuum. After all, destroying a 

Japanese Zero was just a matter of fitting model to data: 

iteratively converging system and world. 

 

Thus the gradient method—like the broader field of machine 

learning, and opposed to so-called symbolic AI—must not be 

considered deductive, properly speaking. Instead, it is probing 

and exploratory, with all of the doubled meanings and gendered 

undertones that these terms imply. The aim of contemporary 

machine learning research, as Luciana Parisi has noted, ‘is not 

to deduce the output from a given algorithm, but rather to find 

the algorithm that produces’ the desired output (2019: 92). This 

is precisely what the gradient method provides: a systematic, 

‘step-wise’ means to search for an ideal model through 

incremental changes to a function’s constitutive parameters and 

variables, following the steepest rate of change up or down a 

loss surface. 

 

As should already be clear by Curry’s language, posing the 

iterative, non-deductive problem of optimization in spatial and 

navigational terms provides a powerful and immediately 

graspable means for imagining how an algorithm might 

function or fail. As this exhaustive, iterative approach to 

modeling became more widely viable with digital computing, 

however, so would the problem of uncertainty. Further 

imagining and visualizing the method itself as a heroic 

protagonist, with the action unfolding on a specific kind of 

terrain—a vivid mountain landscape—arose to fill the 

interpretive void.
11

 

 

 

II. Landscape 
 

‘The history of thought’, Fredric Jameson once wrote, ‘is the 

history of its models’ (1972: v). The second pathway I follow 

highlights some exemplary models incorporating navigational 

and landscape-based metaphors and visualizations from a 

number of scientific fields predating contemporary AI. Each of 

these models informed breakthroughs and new 
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conceptualizations in their respective domains of knowledge 

and helped establish the visual and narrative conventions so 

commonplace in machine learning today. Such conventions, 

after all, did not appear out of nowhere; long before they were 

being used to interpret machine learning algorithms, landscape 

forms were adopted to visualize and render intuitive the 

workings of thermodynamics, the mysterious processes of 

biological evolution, and even the industrial production of 

chemicals on a mass scale. 

 

A striking early example of a landscape model in action is that 

of the thermodynamic surface. First described by Josiah Willard 

Gibbs, the surface was then visualized by James Clerk Maxwell 

both as a map-like terrain on paper and as a tactile three-

dimensional sculpted form.
12

 

 

 

 
 
Fig. 3. “Fig. 26d, Thermodynamic Surface,” Maxwell’s diagram of 

Gibbs’ concept (Maxwell, 1875: 207). 
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Gibbs was likely the first to conceptualize the complex 

behavior of thermodynamics in terms of an imagined surface, 

but he never went so far as to portray it visually, plotting it as 

though it really were a terrain. Maxwell, taking to Gibbs’ 

theory in the 1870s, reportedly spent an entire winter drafting 

and then sculpting a representation of Gibbs’ surface in clay 

before making several plaster copies and sending them off to 

colleagues (West, 1999; National Museum of Scotland, 2020). 

Different points on the thermodynamic surface correspond to 

different configurations of an imaginary substance’s energy, 

entropy, and volume, in turn mapped on to the sculpture’s three 

dimensions. These variables, of course, do not have an 

inherently geometric relationship of the kind that such 

visualizations portray, yet for Maxwell, rendering the relations 

between energy, entropy, and volume as a tactile surface also 

meant making these relations more immediately graspable and 

intuitive (West, 1999; Dragicevic, Jansen, & Vande Moere, 

2020). 

 

 

 
 

Fig. 4. Photographs of one of Maxwell’s casts (Wilson, 1936: 51). 
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Recognizable in Gibbs and Maxwell’s surface is something like 

a landscape sensibility. Beautiful in the eyes of its creators, yet 

technical and exact in the spirit of what Gaston Bachelard 

disparagingly called ‘geometric intuition’ (Bachelard, 1964: 

215), the thermodynamic surface serves as a rich example of an 

abstract mathematical relation represented in terms of 

landscape. Missing on this landscape, however, is an agent that 

would traverse it, much less a purposive protagonist finding its 

way; the idea was not optimization but understanding as such. 

And while the polished smudges on Maxwell’s sculpture betray 

a history of being touched and caressed (this is a sensuous as 

well as analytic object), this desire to trace form with finger, to 

explore a surface with one’s body and eyes, had not yet been 

incorporated into the symbolic logic of the model itself. 

 

With a host of landscape-inspired scientific models that 

emerged in the 1930s and 1940s, however, protagonists would 

be placed definitively upon the surfaces they encountered. 

Exemplary is the adaptive landscape conceived by biologist 

Sewall Wright (1932), across which organisms and species 

were distributed: those higher on a hill were more ‘fit,’ and 

each species could be thought of as striving upwards to reach 

higher adaptive ground. According to Wright’s theory, a 

‘species whose individuals are clustered about some 

combination other than the highest [point on the adaptive 

landscape] would move up the steepest gradient toward the 

peak, having reached which it would remain unchanged except 

for the rare occurrence of new favorable mutations’ (Wright, 

1932: 357-358). The method of steepest ascent here is deployed 

as an analogy to make sense of the mysterious process of 

evolution. Wright continues: 

 
In a rugged field […] selection will easily carry the 

species to the nearest peak, but there may be 

innumerable other peaks which are higher but which 

are separated by “valleys.” The problem of evolution 

as I see it is that of a mechanism by which the species 

may continually find its way from lower to higher 

peaks in such a field […] there must be some trial and 

error mechanism on a grand scale by which the species 

may explore the region surrounding the small portion 

of the field which it occupies. (Wright, 1932: 358-359) 
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Fig. 5. Sewall Wright’s adaptive landscape, which reduces, for 

visualization purposes, ‘many thousands’ of dimensions of gene 

combinations to only two (Wright, 1932: 358). 

 

 

 
 

Fig. 6. Conrad H. Waddington’s epigenetic landscape, inspired in 

part by Wright’s topographic model (Waddington, 1957: 29). 
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Consider, too, the epigenetic landscape proposed by Conrad H. 

Waddington (1940), which sought to metaphorically represent 

the way that genes guide the development of an individual 

organism as akin to how a stream or marble, navigating a series 

of furrowed slopes, would always be pulled downwards by 

gravity but could be influenced and rerouted by other factors. 

As both Jan Baedke (2013) and Susan Merrill Squier (2017) 

have shown, Waddington’s rich representational landscapes of 

complex (and hypothetical) epigenetic processes acted as 

heuristics and as persuasive communication and educational 

devices, helping to ensure the theory’s reception and longevity. 

 

In both Wright’s and Waddington’s models, landscapes stood in 

for theoretical apparatuses of incredible complexity and 

uncertainty. Evolution and epigenesis were posed in the 

intuitive visual language of topography and gravity, climbing 

and descending. In each case, the landscape was something to 

be explored and interacted with, not just on a conceptual level 

as a heuristic, but within the world of the model itself. Mapping 

the progress of an agent across a landscape narrativized the 

totality of a previously impenetrable process, allowing that 

process to be turned over in the mind and perceived in new 

ways. Evolution (Wright) and epigenesis (Waddington) 

remained obscure and hotly debated, but in each case were 

understood to be open to direct investigation through the 

medium of the model: although these landscapes might seem 

merely illustrative, in practice they mediated the truth 

conditions of the theories they represented. For both Wright and 

Conrad, these landscapes mapped onto concrete biological 

processes which were possible to investigate empirically. It thus 

mattered ontologically how one traversed the surface, and 

where one ended up.
13

 

 

Even before World War Two, then, we find prominent 

examples of spatial, narrative, and navigational frameworks for 

understanding abstract mathematical relationships. All share 

visual conventions familiar from topographic maps and a 

vocabulary of landscape, ascending, and descending. These 

stylistic conventions were deployed to explain more intuitively 

how relationships within systems changed in predictable ways. 

Researchers imagined symbolic landscapes representing 

abstract variables, and then placed the elements that they 

wanted to understand on those landscapes, watching their 

protagonists move through the world and narrating that 

movement to say something meaningful about the system as a 
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whole. By the time Curry offered his distillation of Cauchy’s 

method in 1944, discourses of navigation and landscape were 

already pervasive across a number of scientific fields.
14

 

 

 

III. The Unknown 
 

The third pathway I trace, joining with the two just described, 

addresses the importance of digital computation to the method’s 

broad adoption, as well as some of the epistemological 

quandaries practitioners began to encounter along the way. The 

arrival of digital computation greatly extended the gradient 

method’s utility, allowing it to be applied to problems that 

would have previously remained utterly unworkable for reasons 

of time and labor. Gradient optimization is nothing if not 

repetitive, boiling down to the execution of a small number of 

simple operations—steps—over and over again. Though dreamt 

up in the nineteenth century, it did not begin to appear as a 

practical solution to any but the simplest approximation 

problems until computers made it feasible to undertake the 

massive number of calculations that such scenarios required. 

 

In the post-war period, methods of optimization that relied on 

discursive frameworks of landscape and navigation were 

beginning to be placed directly into the sphere of industrial 

production. Exemplary is the work of famed statistician George 

E. P. Box who, along with his colleague K.B. Wilson at 

Imperial Chemical Industries (ICI)’s Dyestuff Division, used 

the steepest ascent method to statistically approximate the ideal 

combination of pressure, temperature, and other variables in the 

mass production of chemicals (Box & Wilson, 1951). Their key 

contribution was to use statistical analysis (and the gradient 

method) to figure out how best to maximize yield and profit, 

visualizing the process using topographic conventions similar to 

those deployed by Wright or Waddington in the context of 

biology. Cauchy’s method for approximating the orbits of stars 

thus became an instrumental means for reconfiguring the 

organic composition of capital, driving the extraction of surplus 

value with newfound calculative exactitude. 
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Fig. 7. Figure 1 from Box and Wilson’s famous 1951 paper, 

illustrating the method of steepest ascent up a topographical surface 

(Box & Wilson, 1951: 3). 

 

 

 
 

Fig. 8. Photograph of a 3D model George Box built to illustrate his 

experimental results. Box emphasized that in commercial 

applications, it was essential that results be communicated clearly 

and intuitively to managers and decisionmakers who may not have 

formal mathematical training. Physical models such as these were 

understood to assist in this task. (Box, 1954) 
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As practitioners began deploying the gradient method in more 

complex and computationally intensive situations, however, so 

new kinds of obstacles emerged. Error landscapes do not begin 

stretched out before us like paintings, available to sight; in this 

sense, they are radically different than the kinds of landscape 

that the Romantics so revered. Before they can be graphed, 

visualized, and described, such surfaces must be explored using 

an optimization algorithm, revealing the topology of the 

landscape step by step. For trivial problems, a relatively 

complete image of the error landscape can be generated, each 

point corresponding to a different combination of variables, all 

of which are testable. But as the number of variables and 

conditions increases, so the number of calculations that would 

be required to create a complete map increases exponentially as 

well. In most cases, error surfaces can be grasped and graphed 

only after the behavior of the function is understood through 

systemized trial and error search, and this only in the simplest 

cases. But even if having anything like a total view of the 

landscape remains unfeasible, the gradient method at least 

offers a means navigating this unfamiliar terrain: an explorer’s 

protocol. 

 

In 1951, while Box and Wilson were using topographic 

language and map-like visualizations to understand and 

optimize industrial chemical production, they noted in their 

experiments that sometimes one variable could be changed 

without affecting yield positively or negatively. This meant that 

moving in a particular direction on their landscape wouldn’t 

seem to have any effect whatsoever—they’d effectively found 

something like a flat spot. The gradient method depends, first, 

on there being a discernable gradient to follow up or down. 

What if there isn’t one? Or, worse, what if one climbs up the 

nearest hill, not realizing that a far higher mountain lies nearby? 

Lacking a direct, unbroken incline leading to the higher point or 

more optimized state, and lacking a complete picture of the 

landscape as a whole, one might easily, Box and Wilson 

realized, get sidetracked or stuck. What if the place one had 

arrived, where there was nowhere higher to go, eventually 

turned out to be an inefficient configuration of variables—a far 

from optimized state? How would one know, if every 

incremental step taken from that point would first lead one 

down? Such anxieties continue to haunt the gradient method 

wherever it is applied. 
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This problem—of mistaking a local maxima for the true global 

maxima—is not an easy one to solve. While computation’s 

capacity to tackle more laborious optimization scenarios 

rendered the question of local and global maxima more acute to 

experimental and applied researchers, the underlying 

problematic can be observed in any sufficiently complex 

system when interpreted in terms of gradients. Sewall Wright 

had already observed a similar problem in evolution: a better 

(higher) adaptive state might lie across a deep valley from a 

species’ present location, making it unlikely that the species 

would evolve in that ‘direction’—doing so would mean first 

moving down into a less adaptive state. A similar challenge 

faced Box and Wilson; a researcher, they wrote, ‘will desire to 

know whether [the surface] probably contains a true maximum 

(in which case he will wish to estimate its position), a minimax 

or col (in which case he will wish to know how to ‘climb out of 

it’), or a ridge (when he will wish to know its direction and 

slope)’ (Box & Wilson, 1951: 4). Indeed, they lament, ‘in 

unfortunate cases this summit may be a flat plateau with small 

curvatures so that the task of obtaining the exact position where 

the summit occurs may be awkward and exacting, and, in 

general, is much more difficult’ (Box & Wilson, 1951: 43). 

 

Functions which yield a single global maxima and a smooth 

gradient that can always be followed towards convergence are 

known as convex functions, due to the smooth shape of the error 

surface. Standard gradient optimization will do nicely in these 

cases if one just keeps climbing. What Box and Wilson describe 

is a non-convex function with an uncertain and impossible to 

predict landscape, a mathematical terra incognita. The 

fundamental problem they identified—the insufficiency of 

standard gradient optimization in non-convex situations—

remains among the most pressing questions in machine learning 

circles today. 

 

This condition of uncertainty, of not knowing whether one had 

arrived at a global maxima or merely a local one, was soon 

internalized within the metaphorical narratives that practitioners 

were using to intuit and explain their mathematical procedures. 

In the early 1960s, control theorists Arthur E. Bryson and 

Walter F. Denham were working on approximating maximum 

cruising altitudes for aircraft, among other questions in 

aerodynamics. ‘The problem,’ they said, ‘is to determine, out of 

all possible programs for the control variables, the one program 

that maximizes (or minimizes) one terminal quantity’ (1962: 
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247). Their approach? ‘[E]ssentially a steepest-ascent method 

and it requires the use of a high-speed digital computer’ (247). 

Their historic 1962 paper, in addition to deploying gradient 

optimization, is also credited as one of the first to articulate the 

method now called backpropagation—though as with so many 

contributions in the prehistory of machine learning, its 

originality in this regard was long overlooked.
15

 

 

Arthur E. Bryson, the paper’s primary author, was working at 

Harvard at the time. In the years following World War Two, 

however, he’d lived in Colorado, where he climbed numerous 

peaks in the nearby Rocky Mountains. When he decided to 

leave Cambridge for Stanford in 1968, part of the draw was its 

setting: “I had in the back of my mind that I loved California 

[…] I liked the west and the Sierras and hiking and climbing” 

(Bryson, 2016). Though Bryson was born in the lowlands of 

Indiana, it seems he was a highlander at heart, a climber as well 

as an engineer and mathematician. Perhaps due to this first-

hand experience in the mountains, his paper with Denham 

describes the challenges posed by the optimization of non-

convex functions with striking immediacy: 

 
This process can be likened to climbing a mountain in 

a dense fog. We cannot see the top but we ought to be 

able to get there by always climbing in the direction of 

steepest ascent. If we do this in steps, climbing in one 

direction until we have traveled a certain horizontal 

distance, then reassessing the direction of steepest 

ascent, climbing in that direction, and so on, this is the 

exact analog of the procedure suggested here in a 

space of m-dimensions where Φ is altitude and α1, α2 

are coordinates in the horizontal plane, Fig. 1. There 

is, of course, a risk here in that we may climb a 

secondary peak and, in the fog, never become aware of 

our mistake. (Bryson & Denham, 1962: 249) 

 

Such is the language of one who has been lost in the mountains 

before. In this passage, the technical problem of optimization is 

posed explicitly in terms of judging when one has reached a 

true summit rather than a false one, and the mathematical 

condition of uncertainty is incorporated directly into the 

explanatory narrative as a dense enshrouding fog. Bryson and 

Denham’s paper, justly celebrated by engineers for its technical 

achievement, must also be recognized for its descriptive flair: 

it’s narrative tone and structure metaphorically articulates both 
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the advantages and pitfalls of its method through a 

mountaineer’s struggle towards the summit. 

 

 

 
 

Fig. 9. Bryson and Denham’s illustration of the path of steepest 

ascent, projected onto the shape of a mountainous landscape. The 

route chosen by their method, rather than taking the most direct 

route, follows the angle of steepest ascent as judged at each 

intermediate step, marked 1-5. The most direct route to the summit 

would necessarily remain uncertain “in the fog” (1962: 249). 

 

 

This is the earliest example I have found of a description of the 

gradient method that incorporates all of what I take to be the 

core narrative elements in contemporary gradient narratives: a 

mountainous landscape; a lone protagonist taking methodical 

steps; a fog (or other narrative device) that obscures the 

landscape from view and ensures that the way ahead is 

uncertain; and a predetermined goal that remains easy to 

articulate (climb to the highest point) but immensely difficult to 

achieve in practice. Success is never ensured: we might not 

reach the top. Each of these narrative elements is now 

thoroughly conventionalized, as integral to the culture and 

practice of contemporary machine learning as the methods 

themselves. 

 

 



 

 

 
KELLOGG •   THE MOUNTAIN IN THE MACHINE •   CM • 2021 

 
 

www.culturemachine.net • 24  

 
 

Fig. 10. AI pioneers Marvin Minskey and Seymour A. Papert 

illustrated the limits of hill-climbing with diagrams that compared 

good’ and ‘bad’ hills: error surfaces that would yield easily to the 

gradient method, and those which would confound it. (Minsky & 

Papert, 1987: 179). 

 

 

These key elements—a mountain landscape, a lone protagonist 

taking steps, a fog of uncertainty, and a set goal—are now so 

standard as to be cliché, repeated again and again in lecture 

halls, YouTube videos, textbooks, and blog posts, used as 

readily to explain why a model succeeded as why it failed. 

Russell and Norvig’s artificial intelligence textbook—a 

standard reference—simply refers to gradient optimization as 

‘hill-climbing search’ (Russell & Norvig, 2010: 122). John D. 

Kelleher, in his introduction to deep learning, writes that ‘[a]n 

intuitive way of understanding the process is to imagine a hiker 

who is caught on the side of a hill when a thick fog descends’ 

(2019: 196). Other examples, like this one from Pedro 

Domingos’ book The Master Algorithm, intended for a broad 

public, are even more fanciful and bizarre: 

 
Imagine you’ve been kidnapped and left blindfolded 

somewhere in the Himalayas. Your head is throbbing, 

and your memory is not too good, either. All you 

know is you need to get to the top of Mount Everest. 

What do you do? You take a step forward and nearly 

slide into a ravine. After catching your breath, you 
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decide to be a bit more systematic. You carefully feel 

around with your foot until you find the highest point 

you can and step gingerly to that point. Then you do 

the same again. Little by little, you get higher and 

higher. After a while, every step you can take is down, 

and you stop. That’s gradient ascent. (2015: 110) 

 

Despite its extravagance, for the most part Domingos’ rendition 

recycles familiar elements from Bryson and Denham’s earlier 

work. Countless other such examples could be cited, of varying 

detail and ostentatiousness. Whether framed as an ascent 

towards the summit or as descent homewards after a long hike, 

and encompassing numerous variations, the same basic patterns 

and structure remains. Gradient narratives constitute something 

of a minor genre all their own, thriving in the interstices of 

computational knowledge production. 

 

Neural networks are not merely compared based on metrics; 

like alpinists, they are also judged by how well they navigate a 

particularly treacherous landscape and celebrated when they 

arrive at their goal with agility, speed, and grace. In what 

remains of this essay, I take up the question of mountaineering 

directly. What does the recurring image of a lone hero lost in 

the fog on a mountainside tell us about the dreams and desires 

of contemporary machine learning? 
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Fig. 11. Landscape visualization has grown much more sophisticated 

with advances in computation, and the geometry of loss landscapes is 

now a field of intense study in its own right. Li et al. note that the 

‘trainability of neural nets is highly dependent on network 

architecture design choices,’ but that ‘[u]nfortunately, the effect of 

each of these choices on the structure of the underlying loss surface is 

unclear’. Visualizations like those above, they claim, can help answer 

questions no less fundamental than ‘why neural networks work’ (Li et 

al., 2018: 1-2).
16

 

 

 

Mount Analog 
 

[W]hat defines the scale of the ultimate symbolic 

mountain—the one I propose to call Mount 

Analogue—is its inaccessibility to ordinary human 

approaches. Now, Sinai, Nebo, and Olympus have 

long since become what mountaineers call ‘cow 

pastures’; and even the highest peaks of the Himalayas 

are no longer considered inaccessible today. All these 

mountains have therefore lost their analogical 

importance. (Daumal, 2019 [1952]: 42-43; emphasis in 

original) 

 

Gradient narratives about mountain climbing are more than 

illustrations; they mediate the production and reproduction of 

today’s computational systems and articulate and reflect 

something of the ethos of the cultures of which they are a part. 

Recall that in their computational application of the gradient 

method to the solving of optimization problems in aerospace 

engineering, Bryson and Denham wrote that the imagined 

climbing scenario they described, involving making one’s way 

uphill step by step while lost in the fog, was an ‘exact analog’ 

of the technical method itself (Bryson & Denham, 1962: 249). 

Here, I take Bryson and Denham at their word, and ask: in what 
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ways are mountain climbing and gradient optimization exact 

analogs of one another? 

 

This is an admittedly strange question, for it seems plain that 

mathematical optimization could not actually be all that much 

like mountaineering. Yet the repeated association of the two 

practices, the constant mapping of optimization as a process 

upon the mountain landscape, reveals more than the mere 

conventionalization of a convenient metaphor. Nor do gradient 

narratives and visualizations of mountain landscapes stand in 

for processes of optimization only because they are felt to 

describe the way these systems work in a technically or 

mathematically precise way. Mountain landscapes also make 

sense as imagined settings for machine learning to occur for 

deeper ideological reasons. 

 

In what follows, I address both practices’ shared roots in 

enlightenment and modernist science, tracing visions of 

universal man’s capacity to overcome all limits couched in an 

ethos of progressive self-overcoming. I take the question posed 

by this analogy to be one that hinges upon a combination of 

material and historical alignments and ideological and 

epistemological orientations which are felt to be held in 

common, whatever the obvious and real dissimilarities which 

exist between gradient optimization and mountaineering as each 

is practiced today. 

 

At stake is something like a common ethos, oriented towards a 

similar dream. Central to both practices, core to both the dream 

of AGI and the dream of Everest, are two closely related 

axioms. First, the belief that learning is about directly 

confronting the unknown, striking out into the world and 

forging an exploratory path towards growth and knowledge. 

Cultures of AI and cultures of mountaineering both engage in a 

productive and constiuitive confrontation with uncertainty: as 

we have already seen in the case of the gradient method, 

learning how to address uncertainty constitutes the very core of 

what it means to optimize, improve, and succeed. Second, there 

is a certain congruence in method, a common emphasis on a 

systematic, rigorous, even machinic pushing of perceived limits: 

a promethean drive to challenge conditions as they are.
17

 The 

mountaineer, striving to tame or even dominate doubt, is 

thought to approach this quest through a methodical regimen of 

repetition, training, and the intensification of one’s own resolve. 

Machine learning’s focus on endless algorithmic repetition and 
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training as a viable path to optimization, learning, and 

intelligence strikes a similar key. 

 

The tradition of seeking knowledge or transcendence through a 

direct confrontation with the unknown has deep roots in 

Western thought. The dream of modern mountaineering, like 

the dream of AI, inherits much from this tradition, which also 

celebrates the figure of the lone intrepid seeker as the propeller 

of progress. Mary Terrall has noted the importance of images 

and practices of exploration and travel in the constitution of 

Enlightenment ideals: since the age of Descartes, ‘[p]hysical 

exertion and exploration came to be associated with discovery 

and understanding, and played an important part in establishing 

scientific reputations’ (1998: 224). Terrall also notes that in this 

context, the metaphor of ‘clear sight’ was joined with that of 

‘moving through uncharted territory’, establishing an ethos 

which emphasized the direct confronting of obscurity and 

illusion by literally and figuratively taking to the hills (1998: 

224). Thus, when John Hunt, the leader of the successful 

Everest expedition which put Edmund Hillary and Tenzing 

Norgay on the summit, wrote of ‘the possibility of entering the 

unknown’, he was already on well-trod ground (1954: 8).
18

 

 

Such values, of course, were inherently gendered and raced, 

establishing the white male subject as the privileged protagonist 

of knowledge and of history.
19

 Though challenged from within 

and without, such values continue to inflect the cultures of both 

mountaineering and AI.
20

 Like digital computation, 

mountaineering saw a very public renaissance in the years 

following World War Two. Overdeveloped nations, seeking 

redemption from the ravages of war, funded expeditions around 

the world—frequently with neocolonial undertones. As Peter H. 

Hansen has argued, in the post-war era the perennial obsession 

with ‘who was first’ on a summit reflected a particular matrix of 

concerns bound up with modern understandings of civilizational 

progress, the demystification of nature, and the sovereignty of 

individual man, all articulated against the geopolitical backdrop 

of the Cold War (2013: 272). With the reconfiguration of global 

power, competition for the conquest of high unclimbed peaks 

became a key arena of geopolitical struggle, as well as a global 

stage where men, often white, straight, and from the Global 

North, competed to win recognition and fame. Many post-war 

expeditions were led by former officers who had served in their 

countries’ war efforts; they brought their discipline, training, 

and militaristic sensibilities along with them. They spoke of 
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laying siege to the Himalaya, winning glory for their countries 

and renown for themselves. 

 

 

 
 

Fig. 12. Cover of the first English edition of Maurice Herzog’s 

Annapurna (1952) recounting the first successful summiting of an 

8000-meter peak. Herzog is depicted alone on the summit holding the 

French flag aloft on his ice axe; the expedition’s success was seen as 

a decisive symbolic victory for France after its humiliation under 

Nazi occupation.
21

 

 

 

Mountains were far more than geopolitical proxies, however. 

Insofar as they symbolized a confrontation with and challenge 

to the unknown, they were also terrains upon which ideas about 

the capacities and limits of the human were forged. 

Mountaineering as a cultural practice was (and remains) not 

merely a secondary effect or consequence of its milieu; the 

practice itself has helped constitute and delineate modern 

notions of individual subjectivity and masculinity. Whatever 
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national priorities it inevitably reflected in the post-war era, the 

mountain landscape also increasingly became the preeminent 

site for demonstrations of individual willpower, settings where 

the contours of the heroic subject were tested and defined. 

These were places where individuals went to challenge the 

unknown with the goal of overcoming it; places of colonial and 

masculinist confrontations with nature and the self. Places, in 

other words, to put a great modern question to the test: what is 

the human capable of? 

 

We can hear echoes of such a question refracted through the 

posthuman drive to build machines which can best the human 

on its home turf. When it is recognized that the same historical 

era which saw the birth of modern AI research in the 1950s also 

witnessed the scaling of many of the world’s highest peaks, the 

projection of heroic mountaineering narratives onto the quest 

for transcendent artificial intelligence begins to make perfect 

sense. Mountain climbing, particularly at mid-century, was an 

intensely promethean undertaking; the whole mountaineering 

mise-en-scène, reverberating with powerful cultural associations 

of progress, of rising to challenges and overcoming them, 

speaks to something of the macho bravura with which AI 

boosters proclaim the inevitable singularity. Though 

contemporary mountaineering culture has mercifully begun to 

temper its more jocular ambitions, the myth of the climber as 

autonomous hero remains as pervasive as ever. Realizing 

human-level AI is felt to represent a daring conquest of the 

impossible, just as the scaling the world’s highest mountains 

once did. And if, indeed, the realization of human potential on 

the summit of a peak can be boiled down to the practice of 

navigating a mountainous landscape step by step, then the 

possibility of achieving artificial general intelligence through a 

doubling down on incremental gradient methods and brute force 

computation appears palpably within reach. 

 

I am arguing here that whatever pragmatic explanatory power 

these gradient narratives undeniably hold for machine learning 

practitioners, the appropriation of the imagery and language of 

mountains and mountaineering also echoes with a particular 

mode of engagement with the world all too familiar to 

mountaineering mythologies: one that Nicola Masciandaro has 

characterized as ‘an overcoming-by-intensifying of its own 

problematic’ (2018: 90). At stake is a systematic and rigorous 

challenging of perceived limits, but articulated through an 

intensification and concentration of one’s core potentialities: the 
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very essence of optimization itself. Marget Grebowicz has 

argued that ‘[t]oday’s climbing body is more often than not 

presented as a convergence of the values of performance, speed, 

and efficiency, in perfect compliance with neoliberal fantasies 

of the individual who overcomes adversity as well as with 

biopower’s demand for docile bodies’ (2018: 94). With this in 

mind, it should hardly be surprising that an ideological figure 

representing the optimized, autonomous subject—the mythic 

self-overcoming mountaineer—has been widely appropriated to 

represent and anthropomorphize a machine that, some imagine, 

will one day surpass the human entirely. 

 

Narrative, as N. Katherine Hayles has insisted, ‘is essential to 

the human lifeworld’ (2007, 1606). The narratives I have 

described constitute the frames through which an ethos of 

optimization in the face of uncertainty is articulated today. No 

less than the calculations they allegorize, gradient narratives are 

core to the theorization and enactment of machine learning as a 

sociocultural practice; as explanatory myths, gradient narratives 

are constitutive of the gradient method’s cultural solidity and 

productive value. As interpretive frames, mountain landscapes 

mediate discourses and understandings of what ‘optimization’ 

and ‘learning’ mean; they color what neural networks are 

imagined to be capable of doing and reflect how practitioners 

conceive and design them in the first place. Gradient narratives 

are simultaneously pragmatic heuristic concepts for the 

production of machine learning systems in metric societies and 

expressions of an ideology, a whole way of orienting the self to 

the world. 

 

The mountain landscape has long been seen as the crucible and 

natural scene for the self-improvement of the autonomous 

subject through training, exertion, and confronting the 

unknown, and as long as there are mountains this is likely to 

remain true for many. I have argued that the legacy of particular 

cultural associations is one reason why the mountain landscape 

lends itself so easily as a backdrop to a project which explicitly 

seeks to overturn inherited notions of what is possible. 

Mountains have long been thought of as proving grounds for 

humans; why not, it seems, for machines? 

 

While gradient narratives today draw upon older cultural and 

linguistic formations allegorizing and internalizing certain 

masculinist approaches to mountaineering, this is not to say that 

less individualist and domineering modes of climbing, and 
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perhaps too of something like machinic optimization, are 

possible. After all, there are many ways to encounter mountains; 

there are also many ways to confront and imagine the 

nonhuman capacities of a machine. We need not necesarrily 

discard our inherited metaphors wholesale, but further attention 

to their histories and undertones might allow us to ask better 

questions of the mandate to ascend and to master the landscape 

at any cost.
22
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Notes 

 

1. There is a lineage to such accusations; the Heideggerian 

philosopher Hubert Dreyfus famously charged another branch 

of AI research (one not reliant on gradient optimization) with 

alchemy in the 1960s (Dreyfus, 1965). 

 

2. N. Katherine Hayles has argued that we include such 

processes under the heading of ‘non-conscious cognition’ 

(Hayles, 2017). We might then understand gradient narratives 

as technosocial myths that aim at understanding the behavior of 

non-conscious cognizers in more familiar humanistic terms. 

 

3. My approach draws inspiration from Anna Tsing’s work on 

anthropogenic landscapes in Denmark—very different sorts of 

landscape than those dealt with here. Tsing grapples with the 

question of how to keep many different timescales and 

timelines in view at once, without imposing something like a 

master frame. ‘Consider,’ Tsing suggests, ‘the key dates 

currently in play for the beginning of the Anthropocene. These 

dates are competing entries—but here I make them points for 

noticing landscape change’ (2017: 8). Rather than assert the 

absolute primacy of one date in particular, Tsing instead takes 

each one into account in as offering a different ‘high’ point 

‘from which to watch for something new’ (2017: 8). 

 

4. See, for example, Chris Anderson’s mosquito-based 

explanation (2019). 

 

5. Narratives set in imaginary mathematical spaces are hardly 

new. Edwin A. Abbott’s Victorian fantasy novel Flatland: A 

Romance of Many Dimensions, first published in 1884, is 

perhaps the most widely known example (Abbott, 2002). 

 

6. Drawing on Alexander R. Galloway’s understanding of the 

digital and the analog, the gradient method could be 

productively considered a digital method for dealing with 

analog phenomena. It is digital because it proceeds by 

individuated, discrete steps, and because of its association with 
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walking and the foot (digits: fingers and toes)—characteristics 

aligned with digitality. Yet the method also requires and even 

presupposes a continuous underlying phenomenon, a curve or 

smooth transition, in order to make any progress—features 

associated with a condition of analogicity. The fact that these 

two modes comingle and thrive together within contemporary 

machine learning, even if the analog appears in simulated form, 

lends credence to the hypothesis that the distinction between the 

analog and the digital is rarely absolute in practice; one can deal 

with analogicity using digital means and vice versa. We could 

productively consider the gradient method as essentially a form 

of sampling: a digital technology for handling a continuous 

phenomenon and moving, step-wise, along it. (Galloway, 2014: 

xxviii-xxix; 2020). 

 

7. Peter Debye, for example, described a version of the gradient 

method in a paper in 1909, drawing upon unpublished work by 

Bernhard Riemann from 1863. Both were oblivious of 

Cauchy’s formulation (Petrova & Solov’ev, 1997). 

 

8. Haskell, a student of David Hilbert, also worked on the 

ENIAC project after the war, and his work is foundational in 

many branches of computer science. There are no fewer than 

three programming languages named after him. 

 

9. Curry notes that, even when it was used, it was frequently 

misattributed; Curry cites Cauchy as the method’s progenitor 

(Curry, 1944: 258-259). 

 

10. The context of this quote is a brief comparison with a 

similar method outlined by Kenneth Levenberg, also at the 

Frankford Arsenal’s Fire Control Design Division (Levenberg, 

1944). Interestingly, Curry differentiates his method from 

Levenberg’s by noting that Levenberg’s approach, to its 

detriment, follows a “broken path” (Curry, 1944). 

 

11. I struggled over how best to describe gradient optimization 

and whether or not to fall back on the topographical language 

which this paper addresses, but the only alternative seemed to 

be merely presenting the algorithm as an equation. I take this 

difficulty as evidence for how constitutive such language and 

imagery is to the method’s use and longevity in the field. As 

Juliette Kennedy has argued, ‘the mathematician,’ (and, we 

might add, the computer scientist or machine learning 
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practitioner), ‘grounds herself in natural language – and in the 

production of images’ (2017: 72; emphasis original). 

 

12. Of relevance to machine learning, Gibbs is also credited as 

one of the founders of modern vector analysis (Crowe 1985). 

 

13. Let me emphasize that these two landscapes represent 

fundamentally different processes, in different strands of 

biology, with different priorities and histories; despite a certain 

resemblance (and indeed Wright reportedly inspired 

Waddington), they should not be confused. Here, I am most 

interested in exploring the formal similarities of the two 

models, which bear so much resemblance to those of 

contemporary machine learning. Readers curious about 

Wright’s model and its legacy should begin by consulting 

Svensson and Calsbeek’s excellent 2013 volume, as well as 

Skipper (2004), Johnson (2008), Petkov (2015), and Pigliucci 

(2008). For Waddington’s landscape, consult Jan Badke’s 

insightful 2013 paper and Susan Merrill Squier’s generative 

2017 book, as well as Haraway (2004: 59-61). 

 

14. Yet another example is found in physical chemistry, with 

the influential concept of the resonance energy surface 

developed by Henry Eyring and Michael Polanyi in 1931. This 

surface was also graphed using the familiar altitudinal lines 

from topographic cartography (Eyring & Polanyi, 2013 [1931]; 

Nye, 2007). 

 

15. Rumelhart et al.’s seminal 1986 paper is credited with 

drawing attention to backpropagation as a method to AI 

researchers. But as has been broadly recognized at least since 

Dreyfus’ 1990 paper, Bryson and Denham’s contribution, 

alongside a 1960 paper by Henry J. Kelley on optimal flight 

pathing, articulated essentially the same approach to 

optimization decades beforehand. Considering what a 

breakthrough backpropagation proved to be once it was adopted 

by AI researchers, one wonders what other underused methods 

lie dormant in unrelated fields today (Dreyfus, 1990; 

Goodfellow et al., 2016; Kelley, 1960; Rumelhart et al., 1986; 

Schmidhuber, 2015). 

 

16. In his work on Jacques Bertin and data visualization, 

Alexander Campolo has drawn attention to structuralist efforts 

to render excesses of abstract quantitative data more 

immediately graspable and intuitive; for the graphical theorists 
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he studies, ‘[v]isualization conditions how data can be made 

intelligible and comparative, how they can be rendered 

empirical’ (2020: 47). Such an impulse to render data 

‘empirical’ through visualization, thereby demystifying obscure 

algorithmic processes, is common in contemporary machine 

learning discourse. 

 

17. Not for nothing was Ueli Steck, perhaps the most celebrated 

alpinist of his generation who passed away in a climbing 

accident in 2017, known by the nom de guerre the ‘Swiss 

Machine’. 

 

18. I credit Margret Grebowicz’s critical work on climbing for 

drawing my attention to this luminous line by Hunt 

(Grebowicz, 2018: 91). 

 

19. On the whiteness of AI, see Cave and Dihal (2020). 

 

20. Adequately addressing these question remains beyond the 

scope of this paper, suffice to say I take most of these ‘failures’ 

to be reflective of larger structural inequalities and patterns of 

violence rather than easily isolated technical hiccups. As such 

they are not amenable to solving with optimization algorithms. 

Such is the case of racist housing, employment, and sentencing 

algorithms in the United States, for example, where, as 

Christina Sharpe argues, white supremacy and anti-Blackness 

constitute part of a ‘total climate’ which would necessarily be 

reflected in the contours of the surfaces that algorithms traverse 

(Sharpe, 2016). 

 

21. National teams from around the world were fiercely 

competing for first ascents in those years; Edmund Hillary and 

Tenzing Norgay’s ascent of Everest in 1953 would be claimed 

by Great Britain, New Zealand, India, and Nepal as national 

triumphs of the first order (Hansen, 2013: 245). 

 

22. Amrita Dhar, among others, is pursuing vital research 

rewriting dominant histories of mountaineering and surfacing 

overlooked contributions from racialized and colonized others. 

In so doing, she is also challenging the image of the lone man 

victorious on the summit—an old and persistent myth—thereby 

changing understandings of what summiting a mountain truly 

costs, and who, beyond the summit team, is responsible for 

such an achievement (2016). 
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