

CULTURE MACHINE VOL 11 • 2010

www.culturemachine.net • 107

’DOES IT WORK?’: THE UNFORESEEABLE
CONSEQUENCES OF QUASI-FAILING

TECHNOLOGY

Federica Frabetti

Monsters vs. Aliens

‘Fighting an alien robot? That was me! And it was amazing!’, boasts
Susan Murphy soon after having defeated an alien robot probe in
San Francisco, with the help of a gelatinous blue blob and a gay fish-
ape hybrid. She gleefully proceeds to enumerate all the different
ways in which being a monster is an extremely appealing and
rewarding status for an American girl of her age. All the while, the
group of freaks that surround her – which includes a mad scientist
and a perambulating insect chrysalis – marvel at the discovery of
their own virtues and talents.

I want to offer a brief reading of the computer-animated 3D feature
film from DreamWork Animation and Paramount Pictures, Monsters
vs. Aliens, as a kind of anticipation of the argument of this article. In
this film (released in March 2009) Susan Murphy, a young woman
from Modesto, California, is hit by a radioactive meteor on the day
of her wedding, thus absorbing a rare substance called quantonium
which mutates her into a giantess. Immediately captured by the US
military and classified as a ‘monster’, she is imprisoned in a top-
secret facility headed by General W.R. Monger where other
‘monsters’ are also kept in custody. Among them are B.O.B.
(Bicarbonate Ostylezene Benzonate, an indestructible gelatinous
blue blob without a brain), Dr. Cockroach, Ph.D. (a mad scientist
with a giant cockroach's head), the Missing Link (a 20,000-year-old
amphibious fish-ape hybrid) and Insectosaurus (a 350-foot grub).
When an alien named Gallaxhar attacks the Earth with his gigantic
robotic probes and an army of clones of himself, General Monger
persuades the president of the United States to deploy the monsters
as military weapons. Having accepted the mission with the promise
of freedom if they succeed, the monsters manage to destroy the alien

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 108

robotic probe that Gallaxhar has sent to San Francisco. During the
fight Susan discovers that she possesses an unexpected strength and
that she is also invulnerable to Gallaxhar’s weapons. Having been
freed, Susan happily returns to Modesto - only to be rejected by her
fiancée (who claims that he cannot be married to a woman who
overshadows him). In the meantime, her monstrous friends
unwittingly cause panic in the neighbourhood. Initially sad and
dispirited, Susan suddenly realizes that becoming a monster has
actually enriched her life, and she fully embraces her new ‘amazing’
lifestyle and her newly formed bond with the other monsters. After a
final epic fight Susan and her gang completely defeat Gallaxhar and
his cloned army, and are eventually acclaimed as heroes. In the last
scene of the film, they are alerted to the fact that in the surroundings
of Paris a snail has fallen into a nuclear power-plant and is growing
into a giant due to nuclear irradiation. They then fly off on a mission
to protect the Earth from the new enemy.

What is particularly interesting about Monsters vs Aliens is that in this
movie the monsters function first and foremost as a figure of the
unexpected consequences of technology. Not only do they all come
into existence as the unpredictable outcomes of experiments gone
wrong (B.O.B. was mistakenly created by injecting a genetically-
modified tomato with a chemically-altered ranch dressing; Dr.
Cockroach ended up with an insect head and the ability to climb
walls while subjecting himself to an experiment in order to gain the
longevity of a cockroach; Insectosaurus, originally a one-inch grub,
was transformed into a giant after being accidentally invested by
nuclear radiation, and while the mad scientist is the figure of the
experiment gone wrong par excellence, even the Missing Link could
not have been found frozen in a lagoon and thawed out by scientists
without some help from technology).1 Even more importantly, the
monsters are also ‘domesticated’ – or rather, they are kept under
custody by the American government and later on transformed into
weapons. In other words, the film seems to imply that technology
needs to be controlled in order to be made useful – that is, it has to
be made into a tool.

Nevertheless, in order to be successfully deployed as weapons,
monsters must be released from custody – or, in order to be ‘used’,
technology must be set free. Yet once it is set free, technology seems
to escape its own instrumentality. Indeed, it is by fighting Gallaxhar
that Susan discovers her unexpected physical strength, while during
the final battle against the aliens Insectosaurus apparently dies, only
to undergo a metamorphosis from a chrysalis into a beautiful

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 109

butterfly. Ultimately, though, the monsters are still kept under
control: they constitute an American military team - albeit a very
special one. It is here that aliens find their place in the film narrative:
a relationship which would otherwise be quite uncomplicated
(humans detain and domesticate dangerous monsters) finds its third
term in the aggressive threat from the outside. Aliens provide an
enemy and help construct the narrative of the American fight for
democracy against (alien) totalitarian regimes. Even though it
occasionally makes fun of the American government (General W.R.
Monger’s name is a pun on the word 'warmonger', and the inept
president of the United States is always on the verge of launching a
nuclear attack by pressing the wrong button), the film still embraces
a narrative that legitimates the Unites States as the world
superpower.2

However, the most interesting point of the film is to be found at the
end. In the final scene the monsters set off to Paris to fight a gigantic
snail, which has broken into a nuclear plant – but should the snail be
perceived as an alien or a monster? Since it is presented as a threat
against which the monsters are supposed to fight, it must be an alien.
And yet, since clearly it is an unexpected effect of technology
(actually, accidental nuclear irradiation is one of the most common
origin stories of superheroes and is very similar to Insectosaurus’
story), the snail must be a monster and in principle it should not be
fought but rather helped out or maybe even recruited as part of the
team. With a revealing lapse, a Wikipedia entry
(http://en.wikipedia.org/wiki/Monsters_vs_Aliens) recounts how
at the end of the film ‘the monsters are alerted to a monster attack
near Paris and fly off to combat the new menace’ (italics mine). In
Derridean terms, it could be said that the snail is the incest taboo of
Monsters vs Alien: the locus where the distinction between monsters
and aliens becomes untenable; it is the ‘point of opacity’ of the film,
or the point where the film narrative undoes itself.3 But why is it
important to think about the untenability of the distinction between
monsters and aliens, and, ultimately, about the distinction between
usable, domesticated, functioning technology on the one hand, and
failing, unpredictable technology, or technology out of control, on
the other?

What I want to argue in this article is that unusability, failure and the
capacity for generating unexpected consequences are in fact
constitutive of technology. Indeed, technology cannot exist without
failure. It cannot be separated from its constitutive fallibility, which,
importantly, also drives its growth. Yet technology also exists only

http://www.culturemachine.net/�
http://en.wikipedia.org/wiki/Monsters_vs_Aliens�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 110

inasmuch as such a separation is continually reasserted – even
though it keeps becoming undone. What is more, I want to argue
that the failure of technology is tightly connected with the concept
of instrumentality. Commonsensically, failing technology is a
technology that does not work, or that does not work as expected. In
doing so, technology escapes its own conception as an instrument, a
tool which we can use, control and master. In other words, it exceeds
its own instrumentality and gives rise to the unpredictable. And yet,
it is precisely the capacity of technology for not working – that is, for
generating unexpected consequences – that ultimately makes it
possible for technology to work.

Moreover, as I will show in a moment, every failure requires a
decision in order to be constituted as a failure – that is, a decision
about what behaviours are considered ‘expected’ or ‘acceptable’ for a
given instantiation of technology. From a technical point of view,
‘failure’ – that is, a malfunction – is something that needs to be fixed.
However, there exists a widespread recognition in media and
cultural studies that a rethinking of contemporary technology is
needed today. For those of us who want to think about technology
differently by asking different questions of technology from the
technical ones, perfectly functioning technologies might not be the
most interesting ones to look at. Indeed, I want to argue here that
technology is at its most revealing precisely when it does not work –
or, even better, when it is unclear, to common users and even to
technical experts, whether it is working or not. I call these moments,
which occur more frequently than one might think at first glance,
‘quasi-failures’, and these instances of technology - ‘quasi-failing
technologies’. I will discuss some examples of failing and quasi-
failing technologies in the further parts of this article, in order to
show to what extent and in what way they can contribute to a
different cultural and political understanding of technology. What is
at stake in this discussion is ultimately the possibility of a non-
functionalist engagement with technology. I am thus posing two
questions: Can we say something about technology that is not an
explanation of how it does or does not work? Can we give a non-
functionalist answer to the question ‘what does technology do?’?

These questions are extremely important for the investigation of
what are commonly named ‘new’ or ‘digital’ technologies in the field
of media and cultural studies. When approaching new technologies,
media and cultural studies has predominantly focused on the
intertwined processes of production, reception, and consumption -
that is, on the discourses and practices of new technologies’

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 111

producers and users. From this perspective, even a technological
object as ‘mysterious’ as software is addressed by asking how it has
been made into a significant cultural object. For instance, in his 2003
article on software, Adrian Mackenzie demonstrates the relevance of
software as a topic of study essentially by examining the new social
and cultural formations that surround it (Mackenzie, 2003). An
analogous claim is made by Lev Manovich in his recent book,
Software Takes Command (2008), where, while arguing that media
studies has not yet investigated ‘software itself’, and advancing a
proposition for a new field of study that he names ‘software studies’,
Manovich is actually adamant that software studies should focus on
software as a cultural object - or, in Manovich’s own terms, as
‘another dimension in the space of culture’ (Manovich, 2008: 4).
Software becomes ‘culturally visible’ only when it becomes visual –
namely, ‘a medium’ and therefore ‘the new engine of culture’ (4).
On the other hand, when addressing the workings of technology
cultural investigations of new technologies tend to draw on the
explanation of how a specific instance of technology functions as it
can also be found in technical literature (see, for instance, Galloway,
2004). Although I recognize that the above perspectives remain very
important and politically meaningful for the cultural study of
technology, I suggest that they should be supplemented by an
alternative, or I would even hesitantly say more ‘direct’, investigation
of technology. I want to argue that it is possible to engage in a closer,
even intimate relationship with technology by focusing on the
capacity of technology to generate the unexpected. Such cautious
intimacy would also be crucial in developing a political
understanding of technology. It would still aim at demystifying
technology and at dispelling what Bernard Stiegler has called its
‘opacity’ (Stiegler, 1998) in order to make contemporary technology
thinkable, thus ultimately enabling us to make decisions about
technologies that increasingly escape our understanding. And yet,
such an approach would remain aware of the fact that our access to
technology is always mediated: it would definitely not assume that
technology can be made totally transparent. It would also keep
questioning the very nature of our ‘intimate’ engagement with
technology itself.

In order to do further such an alternative understanding of
technology, I want to start here by looking at what is possibly the
least accessible (yet most pervasive) of digital technologies – the
one we commonly refer to as ‘software’. Firstly, I want to explore in
what way software’s fallibility was perceived by the emerging
discipline of Software Engineering at the end of the 1960s -precisely

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 112

when the term ‘software’ was becoming popular both within and
without the technical realm. Secondly, I want to examine how,
starting from the second half of the 1990s, such fallibility has been
‘put to work’ in the open source movement.

Calculating the Unforeseeable in the Cold War Years

The discipline of Software Engineering emerged as a strategy for
the industrialization of the production of software at the end of the
1960s. The first two conferences on Software Engineering were
convened by the NATO Science Committee in 1968 and 1969, in
Garmisch (Germany) and Rome (Italy) respectively. They involved
all the so-called ‘founding fathers’ of Software Engineering (the
well-known computer scientists of the time, such as Edsger W.
Dijkstra and Peter Naur), dealt with many of the topics that still
constitute the agenda of Software Engineering today and were
accurately documented through the publication of detailed
proceedings. These two conferences – especially the one held in
Garmisch - are considered the founding moment of Software
Engineering as both an academic discipline and a methodology for
software production. Actually, the Garmisch conference report can
be thought of as the foundational narrative for the field. What I want
to propose in what follows is that, in the late 1960s, Software
Engineering established itself as a discipline precisely through an
attempt to control the constitutive fallibility of software-based
technology.4

Historically, Software Engineering emerged from a crisis, the so-
called ‘software crisis’ of the late 1960s. As Brian Randell – editor of
the reports of the 1968 and 1969 conferences – recalled later on in
his article ‘Software Engineering in 1968’, one of the most significant
aspects of the NATO conferences was the willingness of the
participants to admit ‘the extent and seriousness’ of the software
problems of the time (Randell, 1979: 1). For instance, during the
Garmisch conference Dijkstra reportedly stated that ‘[t]he general
admission of the existence of the software failure in this group of
responsible people is the most refreshing experience I have had in a
number of years, because the admission of shortcomings is the
primary condition for improvement’ (Naur & Randell, 1969: 121).
Terms such as ‘software crisis’ and ‘software failure’ were largely
used at the NATO conferences on Software Engineering, and for
this reason many of the participants viewed that conference as a
turning point in their way of approaching software and in their work

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 113

in the field. Indeed, with the NATO conferences, software began to
be conceptualized as a problem – and the ‘software crisis’ was
constituted as a point of origin for the discipline of Software
Engineering. From the very beginning, the participants in the
Garmisch conference acknowledged that they were dealing with ‘a
problem crucial to the use of computers, viz. the so-called software,
or programs, developed to control their action’ (Naur & Randell,
1969: 3). The very first lines of the Garmisch report establish a clear
relationship between software and control, while at the same time
characterizing this relationship, as well as software itself, as
problematic. But why was software ‘problematic’ in the late 1960?

The problems that the Garmisch conference attempted to address
were mainly related to ‘large’ or ‘very large’ software-systems –
that is, systems of a certain complexity whose development
required a conspicuous effort in terms of time, money and the
number of programmers involved.5 As Randell comments in his
recollections about the Garmisch conference (thus explaining
NATO’s interest in Software Engineering), ‘it was the US military-
industrial complex that first started to try and develop very large
software systems involving man-millennia of effort’ (Randell,
1979: 5). Randell also mentions a paper presented by Joseph C. R.
Licklider as a contribution to the public debate around the Anti-
Ballistic Missile (ABM) System (a complex project which
contemplated the development of enormously sophisticated
software) and eloquently titled ‘Understimates and
Overexpectations’. In his paper Licklider provides a vivid picture
of the gap between the military’s goals and their achievements. He
declares: ‘[a]t one time, at least two or three dozens complex
electronic systems for command, control and/or intelligence
operations were being planned or developed by the military. Most
were never completed. None was completed on time or within the
budget’ (Licklider, 1969: 118).

Even more importantly, Randell adds the following comment:

I still remember the ABM debate vividly, and my
horror and incredulity that some computer
people really believed that one could depend on
massively complex hardware and software
systems to detonate one or more H-bombs at
exactly the right time and place over New York
City to destroy just the incoming missiles, rather
than the city or its inhabitants. (Randell, 1979: 5).

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 114

Here Randell’s ‘horror’ at the excessive self-confidence of some
software professionals stems from the connotative association
between technology, catastrophe and death in a cold-war scenario.
As we shall see in a moment, horror – a powerful emotion - is the
result of the anticipation of the consequences of technology
combined with the awareness of its intrinsic fallibility.

However, by the late 1960s large-scale systems were not unique to
the military scene. Computer manufacturers had started to develop
complex operating systems. Specialized real-time systems were also
being developed, such as the first large-scale airline reservation
system, the American Airlines (SABRE) system. The costs incurred
in developing these systems were immense and they were very much
in the public’s eye. Moreover, some of these systems (such as
TSS/360, and even IBM OS/360) kept performing poorly
notwithstanding the vast amount of resources lavished on them by
their manufacturers – and the professionals involved in these
projects felt the pressure of the public opinion. The Garmisch
conference report was produced expressly to serve as an instrument
for managers of the private and public sectors and policy makers to
anticipate and evaluate the consequences of technology in time. The
participants in the Garmisch conference viewed society at large as
mainly concerned with the problem of the reliability of software and
with its costs, and they measured the relation between software and
society in terms of ‘impact’. And yet – and this is an extremely
important point for the investigation of software failure - it is
precisely this opposition between society and technology that seems
not to hold everywhere in the Garmisch report. For instance,
participant E. E. David describes the process of software growth
according to the report in the following terms:

In computing, the research, development, and
production phases are often telescoped into one
process. In the competitive rush to make available
the latest techniques, such as on-line consoles
served by time-shared computers, we strive to
take great forward leaps across gulfs of unknown
width and depth. In the cold light of day, we know
that a step-by-step approach separating research
and development from production is less risky
and more likely to be successful. … This situation
is familiar in all fields lacking a firm theoretical
base. Thus, there are good reasons why software

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 115

tasks that include novel concepts involve not only
uncalculated but uncalculable risks. (Naur &
Randell, 1969: 15 f.)

David focuses here on the pace of software growth. The
competition between computer manufacturers forces software
professionals to confuse (‘telescope’) research and production,
which should remain separate. Therefore, the uncertainties which
are typical of research (here intended as the development of
innovative software) spread to production. David’s metaphor
opposes ‘leaps’ to ‘steps’. The leap is for him a dangerous way to
move forward, motivated by the lack of knowledge. The step-by-
step approach would be a safer way - not to slow down the growth of
software, but to make the speed of such growth more manageable.
One must be reminded once again here that the participants in the
Garmisch conference had to face some major doubts concerning
large-scale software systems: were such systems actually feasible? In
David’s terms, the question could have been reformulated as
follows: was the speed of software growth actually manageable?
Importantly, David’s statement attributes the need for taking big
leaps forward to the lack of a ‘firm theoretical basis’: in other words,
the inability to estimate the feasibility of a software project in a
reliable way leads to the impossibility of carrying it out step by step,
and ultimately to its failure. The failure of a software project then
seems to be related to the failure of the management of time.

According to David, software professionals are fundamentally
concerned not just with risk (that is, the possibility of failure) but
also with ‘uncalculated’ and ‘uncalculable’ risks. It seems quite
understandable that certain risks cannot be calculated due to the
lack of accurate knowledge. What is really surprising though is
David’s use of the expression ‘uncalculable’. It is not quite
common for software professionals, and for engineers in general,
to acknowledge that a technical project involves uncalculable risks.
Although the participants in the Garmisch conference must not
have been aware of this fact, the concept of the calculability of
time has a distinct Heideggerian echo.6 I will come back to this
point in a moment. However, for David the concepts of risk and
calculability are both related to the future: estimates are the
expression of a calculability of the future, they actually presuppose
the calculability of the future. And it is precisely this faith in the
calculability of time, and therefore in the feasibility of software
projects, that is put into question in the Garmisch report (as well

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 116

as in the narrative of the ‘software crisis’ as the source of
technological ‘horror’).

At this point I want to posit the following question: to what extent
can the incalculability which is lamented by David be linked to the
‘unforeseen consequences’ that for Jacques Derrida are always
implicit in contemporary technology? One must be reminded here
how in a dialogue with Bernard Stiegler published in Ecographies of
Television, Derrida argues that the acceleration of technological
innovation in the contemporary world constitutes a ‘practical
deconstruction’ of the instrumental conception of technology
(Derrida & Stiegler, 2002: 45). It is true that in the contemporary
world technological innovation is massively appropriated by
multinational corporations and nation states, by means of their
‘research and development’ and ‘defence’ departments, and that
technological innovations are constantly programmed to support
economy. But it is also true that technological innovation still
gives rise to unforeseen effects. Derrida even propounds that the
greater the attempt to control innovations, the more
unforeseeable the future becomes. Such unforeseen effects
ultimately deconstruct the understanding of technology as merely
instrumental, as well as the perception of the human as separate
from his tools and a master of them. But in what way did the
participants in the NATO conferences explain the ‘uncalculability’
of technology?

The Garmisch conference report is dominated by a widespread
recognition that the ninety-nine per cent of software systems
worked – as Jeffrey R. Buxton states - ‘tolerably satisfactorily’ (15).
Only certain areas were viewed with concern. Kenneth W.
Kolence comments:

The basic problem is that certain classes of
systems are placing demands on us [software
professionals] which are beyond our capabilities
and our theories and methods of design and
production at this time. There are many areas
where there is no such thing as a crisis – sort
routines, payroll applications, for example. It is
large systems that are encountering great
difficulties. We should not expect the production
of such systems to be easy. (Naur & Randell,
1969: 16)

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 117

We already know that the risky ‘classes’ of systems are large-scale
and real-time ones. Nevertheless, this passage seems to take the
argument a step further and relate the uncalculability of software
development to certain demands posed by society that go beyond
the technological capabilities of the time.

In other words, not only did the conference participants feel the
pressure of social demands on them; they also felt that software
development reached its point of crisis when society pushed the
boundaries of state-of-the-art technology. But did these demands
come from society or from technology itself? Here I want to make
the suggestion that such a question is at work in the whole of the
Garmisch report and that it silently destabilizes the separation
between the technical and the social. Actually, it is precisely when
dealing with the issue of the responsibility for the technological risk
that the conference participants seem to be confronted with the
impossibility of separating technology from society. For instance,
Ascher Opler states:

I am concerned about the current growth of
systems, and what I expect is probably an
exponential growth of errors. Should we have
systems of this size and complexity? Is it the
manufacturer’s fault for producing them or the
users’ for demanding them? One shouldn’t ask for
large systems and then complain about their
largeness. (Naur & Randell, 1969: 17)

Opler’s passage is intriguingly ambiguous. He asks whether the
responsibility for the rate of the growth of technology must be
attributed to the users or producers of technology. The
undecidability of this dilemma leaves its mark on the field of
Software Engineering and especially on its relationship with
technological failure. On the one hand, the participants in the
Garmisch conference seem to acknowledge that risks are implicit in
software, and that software fallibility is unavoidable. This is what
David and Fraser state: ‘[p]articularly alarming is the seemingly
unavoidable fallibility of large software, since a malfunction in an
advanced hardware-software system can be a matter of life and
death’ (Naur & Randell, 1969: 16). On the other hand, it is claimed
that risks can be avoided if an appropriate and effective ‘theory’ of
the development of software was to be produced. From this latter
point of view, the approach to software development must be
‘systematic’ (Shaw, 1989), and therefore it must become a form of

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 118

engineering. However, these two points of view are entangled and
one does not exist without the other.

As a result, Stanley Gill concludes: ‘[i]t is of the utmost
importance that all those responsible for large projects involving
computers should take care to avoid making demands on software
that go far beyond the present state of technology unless the very
considerable risks involved can be tolerated’ (Naur & Randell,
1969: 18). This quotation might sound like an attempt to
discharge the responsibility for technological risk on society. In
fact, it requires deeper analysis, since in what way could policy
makers evaluate risks that they do not know? Software
professionals are the ones who are expected to have such
knowledge. A Habermasian answer might suggest that policy
makers should be better informed of technological risks and able
to discuss them freely (Habermas, 1991). But what Gill is actually
saying here is that society shall not make demands that can be met
only by exceeding the current state of technology. Here we are
confronted with one of the ‘points of opacity’ – as Derrida (1980)
would have it – of the foundational narrative of Software
Engineering. Indeed, it seems to me that the irreconcilability of
these two aspects – and therefore the necessity of calculating
incalculable risks, and of attributing responsibility for them – is a
point where Software Engineering ‘undoes itself’ precisely at the
moment of its constitution. What Gill means here is that society
needs to take responsibility for an incalculable risk. The real
problem here is the incalculability of the speed of technological
growth - that is, of the rate at which the state of technology is
exceeded.

In sum, at the end of the 1960s Software Engineering as a discipline
with a theoretical foundation is called for in order to avoid the
(unavoidable) fallibility of technology – a fallibility that constitutes
the risk posed by technology, or, better, technology as a risk. This
point of opacity suggests that Software Engineering establishes itself
as a theory of technology by expelling fallibility from technology –
but such a fallibility (the unexpected consequences of technology)
is intrinsic to technology itself, and is exactly what allows Software
Engineering to exist (that is, the reason why Software Engineering is
called for). In other words, Software Engineering performs an
impossible expulsion of constitutive failure from technology, while
simultaneously establishing itself as a discipline with this move.
Since such an expulsion is performed through the calculation of
time, it can also be said that in Software Engineering the

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 119

calculability of time is undone in its very constitution. Going
beyond Stiegler’s concept of the dis-adjustment between
technology and society (Stiegler, 2003), I also want to suggest that
society is instituted in the Garmisch report as that which places risky
demands on technology – while at the same time the report declares
technology as constitutively fallible, as something that intrinsically
incorporates unforeseen consequences. Therefore, the projection of
the fallibility on society - that is, on the demands that society poses
to technology - is the way in which the conference participants both
assume and discharge responsibility for the technological risk: they
cannot actually maintain the boundary between technology and
society, because this boundary keeps becoming undone. This is why
I said earlier that (in Heideggerian terms) Randell’s ‘horror’ is the
result of anticipation plus the fallibility of technology. In a way, it
can be said that, contrary to Heidegger’s understanding of the
relationship with death as constitutive of a temporality which is
more ‘authentic’ than the temporality of calculation, in Software
Engineering the question of death (for instance, the death of New
York’s inhabitants caused by a ballistic device gone wrong) is dealt
with as a problem of calculation.

Are You Experienced? Clumsy Users and Dumb-Proof
Technologies

In the Garmisch conference report ‘the user’ makes its appearance
as a problematic figure towards whom software developers have
ambivalent feelings. On the one hand, J. N. P. Hume suggests that
designers must not ‘over-react’ to individual users – that is, in order
to develop an effective and usable software system, they must
identify the requirements ‘common to a majority of users’ and focus
on them (Naur & Randell, 1969: 40). On the other hand, J. D.
Babcock argues for the intelligence of the users. He comments:
‘[t]he users are the people who do our design, once we get started’
(40). In doing so, Babcock awards ‘the users’ an essential role in the
process of software development various decades before the
emergence of cooperative Human-Computer Interface (HCI).7
However, the conference participants express a general discomfort
about interacting with ‘the user’. Manfred Paul describes the user as
someone who ‘does not know what he needs’, but he couples this
with another kind of ignorance: users are actually ‘cut off from
knowing what is or what might be available’ (40). And Al Perlis
adds: ‘Almost all users require much less from an operating system
than is provided’ (40). In these two passages users are understood

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 120

alternately as unable to understand their own needs – and thus
unable to pose clear requests to technology, and as overwhelmed by
the technological offer – and thus incapable of making the most of
the functionalities provided by technology.

These complaints about ‘users’ are a familiar feature not just of
Software Engineering but also of the general approach of software
developers to their non-technical counterparts (see, for instance,
Bolter, 1984). However, it would be reductive to interpret such
complaints merely in terms of the difficulties encountered by
software practitioners in communicating with non-technical users.
Importantly, J. W. Smith notices that designers usually refer to users
as ‘they’, ‘them’ (Naur & Randell, 1969: 40) - a strange breed living
‘there in the outer world, knowing nothing, to whom nothing is
owed’. He also adds disapprovingly that most designers ‘are
designing… for their own benefit – they are literally playing games’
(40). They have no conception of validating their design, or at least
of evaluating it in the light of potential use (40).

This representation of the user as someone ‘out there’ – someone
whose ‘needs’ should be taken into account in order to validate
software instrumentally – is particularly relevant if we are to
understand how the figure of the user operates in Software
Engineering. In fact I want to suggest that the ‘user’ and their ‘needs’
are part of a narrative that institutes a fictional ‘origin’ of the
software system. As I have shown earlier on, in the Garmisch
conference report ‘society’ is the locus of a projection of the
‘demands’ that are supposedly made of technology. Similarly, when
conceiving a software system, software engineers understand it as
the solution to some pre-existing ‘problem’, which is projected in
the world ‘out there’ in order to justify the existence of software.
Here I want to emphasize that the figure of the user plays an
analogous role – that is, the user’s needs are part of a narrative that
software developers construct in order to justify the system they are
developing. This is not to say that users do not really exist or that
they do not express their demands in terms of what functionalities
should be provided by a software system. In fact, the Garmisch
conference report takes communication with users very seriously at
all levels. And yet, what I want to point out is that the figure of the
‘user’ is positioned by the report outside the process of software
development in a constant and incomplete movement of ‘expulsion’
of certain characteristics of software as ‘user needs’. In Goos’s
words, software developers need to ‘filter the recommendations
coming from the outside’ (Naur & Randell, 1969: 41). A double

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 121

strategy is at work here, which acknowledges the importance of
users while focusing on how to keep them at bay. Randell even
laments the amount of time wasted on ‘fending off the users’ (41).
Thus, ‘the user’ is both constituted and neutralized: while it is
acknowledged that software development is set in motion by the
very existence of (potential) users and that it needs their feedback,
the very development of the software system acts as a form of
containment of the (supposed) user’s exigencies.

Even more importantly, the figure of the user is associated with the
so-called ‘extensibility’ of software. According to Letellier, a
software system should be ‘extendable’, or ‘open-ended’, thus
allowing its developers to modify it in the future (Naur & Randell,
1969: 38). Moreover, as H.R. Gillette points out, ‘documentation’
(commonly referred to as ‘user manuals’) must be provided to
users, whose goal is ‘to train, understand, and provide maintenance’
(39). User manuals are what enables users to enter an active
relationship with software. Ultimately, they allow users to engage
with a system whose open-endedness is inscribed in code.
Therefore, documentation also constitutes a point where the
capacity to take advantage of such open-endedness and to take the
system into an unexpected direction is ultimately handed over to
the users. This does not mean that any user can actively reprogram
any system. In fact, according to the Garmisch conference report,
one of the aims of software developers is to make the system ‘dumb-
proof’ – that is, robust and resilient enough to resist ‘improper’ uses
on the part of inexperienced and non-technical users (Naur &
Randell, 1969: 40). And yet, it seems to me that the figure of the
user is the locus where the instrumentality of software is both
reasserted by implicitly defining it as a tool to be ‘used’ and opened
up to unexpected consequences. The ‘user’ is actually a name given
to a part of the process of software design. It is a field of forces that
both constitutes the process of software development and
destabilizes it through practices which are potentially characterized
by ignorance, impropriety and the threat of failure. In the figure of
the user the instability of the instrumental understanding of
software and software’s capacity for escaping instrumentality
through the unexpected consequences it generates become
apparent. Even more importantly, the ambivalent figure of the user
will be at the core of many unexpected developments of Software
Engineering in the 1980s and 1990s.

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 122

A Malfunction Is a Decision

‘Any tool should be useful in the expected way, but a truly great tool
lends itself to uses you never expected’, writes Eric Steven Raymond
in his article of 1997 titled ‘The Cathedral and the Bazaar’. This
article, republished on-line many times, constitutes the Bible of
Software Engineering for the open source movement. It was
conceived by Raymond as an answer to Frederick Brooks’ classical
manual of Software Engineering, The Mythical Man-Month (1995),
which was published in 1975 and which still remained influential in
the 1980s. The title of Raymond’s article is actually a pun on Brooks’
famous metaphor of software development as a ‘cathedral’. In 1975
Brookes was still very much preoccupied with time management,
especially in relation with the organization of large groups of
programmers. ‘[M]ost programming systems’, he muses in his book,
‘reflect conceptual disunity far worse than that of cathedrals’, albeit
they did not take centuries to build (Brookes, 1995: 42) – and yet,
such disunity does not arise from ‘a serial succession of master
designers, but from the separation of design into many tasks done by
many men’ (42). Brooks’ main point here is that ‘conceptual
integrity is the most important consideration in system design’ (42).
A software system needs to ‘reflect one set of design ideas’ (42), and
for this reason software design needs to be structured hierarchically,
so that a small group of designers is in charge of all the conceptual
decisions which a larger group of programmers will then implement
into code. Although a detailed discussion of Brooks’ argument
would be outside the scope of this article, it is worth noting that in
his theory of Software Engineering Brooks attempts to control at
least part of the unpredictability of software through the hierarchical
organization of its development.

According to Raymond, Linus Torvald developed Linux according
to a very different methodology.8 Raymond contrasts the two
models of the ‘cathedral’ and the ‘bazaar’ – where the ‘cathedral’
model is common to most of the commercial world, while the
‘bazaar’ model belongs to the Linux (and the open source) world.
What Raymond calls the ‘cathedral’ model is in fact Software
Engineering as conceived by Brooks – that is, quite a consolidated
discipline with its own established corpus of technical literature.
Raymond argues that the two models of the cathedral and the bazaar
are based upon contrary assumptions about the nature of software
development, and particularly of software debugging.

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 123

Software debugging is a late stage of software development, and is
part of what in Software Engineering is generally called ‘test phase’
(Sommerville, 1995). Before being released to commercial users, a
software system needs to be tested – namely, it is necessary to verify
that the system meets its specifications, or (once again) that it works
as expected. One of the activities involved in testing is debugging:
when a test reveals an anomalous, or unexpected, behaviour of
software, code must be inspected in order to find out the origin of
the anomaly – namely, the particular piece of code that performs in
that unexpected way. Code must then be corrected in order to
eliminate the anomaly. The testing process takes time because all the
functions of the system need to be tested. Furthermore, sometimes
the correction of an error introduces further errors or
inconsistencies into the system and generates more unexpected
behaviour. Although in the phase of testing unexpected behaviour is
generally viewed as an error, it is worth noting that decisions must
still be made at this level. The testing team is responsible for
deciding whether the unexpected behaviour of the system must be
considered an error or just something that was not anticipated by
the specifications (since, as we have seen earlier on, specifications
are never complete) but that does not really contradict them. Errors
need to be fixed by correcting code, but non-dangerous, and even
useful, anomalies can just be allowed for and included in the
specifications. Thus, the activity of deciding whether an anomaly is an
error introduces changes into the conception of the system, in a
sustained process of iteration.

The complexity of the above process explains why software errors
are also called ‘bugs’. Although the etymology of the term is
uncertain, it hints at the fact that errors are often very hard to find –
like the moth that Grace Hopper is said to have found trapped in a
relay of the electromechanical computer Mark II in 1945, which
caused many malfunctions. Locating a bug is hardly a
straightforward and unequivocal process. Not only is it necessary to
find out what part of code causes a malfunction, and to read it in
order to find out what mistake has been made in writing it. More
importantly, very often no obvious mistakes (such as misspellings)
can be found because the malfunction is the result of the interaction
of that piece of code with other pieces of code. Thus, more code has
to be inspected, and the process tends to grow exponentially. For
this reason Raymond introduces his famous aphorism that ‘given
enough eyeballs, all bugs are shallow’ (Raymond, 2000: non-pag.).
This principle is the foundation of the whole conception of open
source Software Engineering, since the realization of an open source

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 124

project is a collective task. Simply put, according to Raymond,
Torvald maximized the number of ‘person-hours thrown at
debugging and development, even at the possible cost of instability
in the code and user-base burnout if any serious bug proved
intractable’ (non-pag.). Raymond’s passage shows how in open
source the maximization of productivity is still the aim – but now
programmers are prepared to risk the instability of the system, or
rather, they have accepted that instability is the fastest way forward.
In a way, it can be said that open source programmers feel
comfortable with the idea of working on a Stieglerian device that
goes faster than its own time (Stiegler, 1998) - they even use such
speed to manage the project itself.9 Moreover, they are comfortable
with software anomalies, malfunctions and failures. Torvald releases
different versions of the system very rapidly, because, as Raymond
explains, ‘given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the fix
obvious to someone’, or, as we have seen above, and according to
what he calls ‘the Linus’ Law’: ‘given enough eyeballs, all bugs are
shallow’ (Raymond, 2000: non-pag.).

For Raymond it is quite obvious that ‘more users find more bugs’,
because they all have different ways of stressing the functions of the
program (for instance, inventing new uses for it). This effect is
amplified when users are co-developers. It could be said that, in
open source, making demands that exceed the boundaries of
technology has stopped being a problem. In fact, making unexpected
demands towards software seems to be the only way for software
itself to grow. And this is not just because users are now empowered
with the capacity for developing the system – something that to
some extent they could also do in traditional Software Engineering,
although there were ‘gate-keepers’, whose role was to ‘fend off’ users’
requests. More importantly, in open source the development of the
software system is explicitly distributed among many individuals,
who produce many overlapping versions of the system. If the parallel
process of the development of the system is fast enough, then the
system coordinates itself. I want to suggest that this realization itself
can be viewed as one unforeseeable consequence of the Software
Engineering of the 1970s and 1980s.

Of course, even open source software systems need to become
stable at certain points in time: any time one wants to stop being a
developer and starts being a user, one must be able to ‘use’ the
system as a tool. The stabilization of the system coincides with its
instrumentalization, or, vice versa, instrumentality emerges with

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 125

stability in time. And yet, this stabilization is not scheduled; it is not
understood as the end of a certain stage of development which
needs to be planned in advance and for which a deadline is
established. In a way, there are no timetables, no deadlines. Stability
is something that happens to the system, rather than being scheduled
and worked toward. However, as Raymond notices in the above
passage, a certain amount of control needs to be maintained over
releases. Linux versions are numbered in order for potential users to
choose which version to run. They can either run a more stable
version (which nevertheless might present some anomalies that
have not yet been solved) or ‘ride the cutting edge’ and run a newer
version (which is likely to have been debugged further and perhaps
also enriched by new functionalities, but which, for this very reason,
can give rise to some more unexpected consequences). Raymond’s
passage attributes to users the capacity for evaluating the risks which
are implicit in technology and for minimizing such risks by choosing
the more stabilized version of a system. Nevertheless, he has already
recognized that software always entails unforeseen consequences, to
the extent that a system which is considered stable might actually
lead to great surprises. What I want to suggest here is that
Raymond’s distinction between risky and stable systems shows that
decisions regarding technology can and must be made by taking into
account - rather than denying - technology’s incalculability.

The Monstrous Future of Technology

In the documentary The Net (2003), director Lutz Dammbeck
shows how obscuring the incalculability of technology leads to
setting up an opposition between risk and control, and between
‘good’ and ‘bad’ technology, and ultimately to the authoritarian
resolution of every dilemma regarding technology. Questions such
as, ‘Should technology be ‘democratized’?’, ‘Should it be made
available to everyone even when it is “dangerous”?’, ‘Who decides
what is dangerous for whom?’ are then addressed by embracing
either a policy of control or a deterministic, almost paranoid fear of
technology, which is also possibly combined with a Luddite stance.
The film explores the complex story of Ted Kaczynski, the infamous
Unabomber. A former mathematician at Harvard, Kaczynski
retreated to a cabin in the wilderness of Montana in 1971. In 1996
he was arrested by the FBI under the suspicion of being responsible
for the attacks carried out between 1978 and 1995 by an unknown
individual nicknamed the Unabomber against major airlines
executives and scientists at elite universities. The film complicates

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 126

the narrative regarding the Unabomber (who was also the author of
an anti-technology Manifesto, and an ultimate figure of resistance for
those who oppose contemporary technology as a form of control)
by situating him within the complex and contradictory web of the
late twentieth-century technologies.

Particularly revealing is an interview with John Taylor – an ex-NASA
engineer and an admirer of Norbert Wiener, the founding father of
cybernetics – which shows how the idea of calculability, and the
attempt to expel the unexpected from technology, was crucial for
early cybernetics. Taylor recounts how ARPA (the Advanced
Research Projects Agency) was set up in 1958 by the American
president Eisenhower with the goal of seeking out ‘promising’
research projects – in Taylor’s words, projects that had ‘a longer
term expectation associated with them’. ARPA was instituted after
the launch of the Russian space probe Sputnik in 1957, which Taylor
characterizes as ‘a great surprise’ for the United States. The
American Department of Defence set up ARPA ‘in the hope that we
would not get surprised again like the Russian surprised us’. The
ambivalence of the term ‘surprise’ as both risk and promise is
obvious in Taylor’s words: the best research projects are the ones
which hold the ‘promise’ of ‘good surprises’, which will in turn
prevent the enemy from surprising us in a ‘bad’ way. ARPA was
therefore meant to ‘domesticate’ the potential of technology to
surprise us, that is its capacity for generating the unexpected, by
subjecting ‘promising’ projects to control. Taylor ostensibly
embraces such a philosophy of control. When, during the interview,
Dammbeck mentions the Unabomber, a horrified look crosses
Taylor’s face and, as many of his colleagues interviewed in the film
do, he refuses to speak about Kaczynski, dismissing him as a terrorist
and even comparing the Unabomber’s Manifesto to Hitler’s Mein
Kampf. When Dammbeck suggests that some people such as the
Unabomber might be scared by technology and asks Taylor what he
is scared of, Taylor answers ‘I am scared of Al-Qaeda… I am scared
of cancer. But if we could find a cure for cancer, we wouldn’t be
afraid’. According to Taylor, fear is a matter of ignorance, of ‘not
knowing’. By possessing more knowledge, he pronounces via having
recourse to a rather curious phrase - we could ‘prohibit cancer’.
Taylor’s revealing formulation is the ultimate expression of a desire
for the technological control over nature and for the complete
calculability of the future.

The idea of cybernetics as the science of control takes up a new
meaning here – one related to prediction, calculation, foreseeability.

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 127

This is particularly intriguing if one considers, as Dammbeck does,
that one of the participants in the Macy Conferences (which
instituted cybernetics as a discipline between 1946 and 1953), the
psychologist Kurt Lewin, conceived of a project for programming
humans to give them an ‘anti-authoritarian personality’ in order to
prevent the possibility of fascism forever. Oblivious to the fact that
this would be the ultimate authoritarian gesture, Lewin suggested
that cybernetics could control and remap people’s subconscious in
order to immunize them against totalitarianism and to make
authoritarian systems impossible. For him, anti-authoritarianism
was first and foremost a matter of calculation, as the control of the
political future of humanity. Ironically, drawing on Lewin’s project,
Henry A. Murray, one of the fathers of today’s assessment centres,
devised a series of tests which were supposed to highlight concealed
psychological tendencies by penetrating consciousness with non-
surgical means - basically LSD and other drugs. Such tests were
carried out by the CIA in the late 1960s at Harvard on a group of
talented young male students, among whom was Ted Kaczynski.
Whether those experiments led Kaczynski to the fear of occult forms
of mind control, and ultimately resulted in his paranoid terror of
technology is a possibility that the film leaves open. Importantly,
however, Dammbeck’s film makes a suggestion that control and
incalculability, risk and opportunity, are constitutive of technology.
As Dammbeck himself states, the key to Kaczynski’s tragedy is the
fact that he is ‘part of a system from which there is no escape’. He
does not understand that, even isolated in a forest cabin, one is still
part of the technological system (a cabin is a form of technology,
after all), and that there is no ‘outside’ of technology.

Once again I want to emphasize here that in order to make
responsible decisions about technology, one must be aware that
technology, as well as the conceptual system on which it is based,
can only be problematized from within. This is precisely what the
search for the points of opacity of technology allows us to do –
stepping out of a conceptual system by continuing to use its
concepts while at the same time demonstrating their limitations
(Derrida, 1980). This process of the problematization of technology
is creative, productive and politically meaningful. In fact, it shows
that, since not everything in technology can be thought or fully
conceptualized within one consistent framework, and since points of
opacity always remain, technology also always brings about
unexpected consequences.

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 128

Perhaps the most important point of opacity that emerges from such
a problematizing reading is the conceptualization of technology in
terms of instrumentality. As we have seen, a sustained attempt to
define software as instrumental can be found in Software
Engineering. Such a definition presupposes that software is
controllable, that its development and uses can be planned and that
the risks and consequences implicit in software can be foreseen.
Broadly speaking, this concept of software is based on the
Aristotelian idea that technology is a tool that must be mastered by
humans to pursue certain ends – a concept that constitutes the
foundation of the general understanding of technology in the
Western philosophical tradition. Consistently with this Aristotelian
line of thought, not only is software defined as a tool in Software
Engineering, but it is also conceptualized in terms of binary
oppositions (for instance the one between technology and society)
and its development is articulated in linear terms, as a controllable
sequence of steps. This philosophico-technical conjuncture is what,
in the words of Timothy Clark, Derrida understands as the
‘complicity of technology with metaphysics’ (Clark, 2000: 248).
And yet, as the thinkers of ‘orginary technicity’ have shown,
technology cannot be fully conceptualized within the Aristotelian
framework (Beardsworth, 1996).10 In fact, the understanding of
software as a tool is continuously undone by the unexpected
consequences brought about by software – which must be excluded
and controlled in order for software to reach a point of stability but
which at the same time remain necessary to its development.11

As we have seen at the beginning, the snail of Monsters vs Aliens is the
point where the instrumentality of technology undoes itself, because
technology is always both a monster and an alien, an instrument and
a threat, a risk and a promise. This is the fundamental double
valence of the unexpected as both failure and hope. Like Derrida’s
pharmakon, technology entails poison and remedy, danger and
opportunity (Derrida, 1981). The unexpected is always implicit in
technology, and the potential of technology for generating the
unexpected needs to be unleashed in order for technology to
function as technology. The attempt to control the unexpected
consequences of technology is ultimately destined to fail - and yet it
must be pursued for technology to exist. For this reason, every
choice we make with regard to technology always implies an
assumption of responsibility for the unforeseeable.

This is the problem that I have started from – namely, the fact that
we constantly need to make decisions about a technology which is

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 129

always, in Stiegler’s words, somehow opaque. These decisions are
profoundly political and they influence our very existence as human
beings – not just as users of tools and machines but also as beings
that co-emerge and co-evolve with technology. If one takes into
account the unavoidable opacity of technology, no Habermasian
way out of this dilemma can be imagined – namely, it is not enough
for policy makers and citizens to make ‘informed’ decisions
regarding technology. Of course, such decisions are inevitable and
necessary, but it must also be kept in mind that not everything in
technology is calculable, and that therefore every decision about
technology is an assumption of responsibility for something that we
cannot actually foresee. And yet a decision must be made, and
responsibility needs to be taken. The more ethical decisions are the
ones that take into account – or at least do not mask - this dilemma
and that give account of their own reasons. By opening new
possibilities and foreclosing others, our decisions about technology
also affect our future. Thus, making responsible decisions about
technology becomes part of the process of the reinvention of the
political in our technicized and globalized world. Rethinking
technology becomes a form of imagining our political future.

Endnotes

1 Ostensibly the film here taps into the popular tradition of
superheroes that has dominated American comic books for decades
and that has subsequently crossed over into other media. The so-
called ‘origin stories’ associated with superheroes, which explain the
circumstances by which the characters acquired their exceptional
abilities, often involve experiments gone wrong (see, for instance,
Reynolds, 1994).

2 Judith Halberstam has been recently constructing a ‘queer’ archive
of 3D animated features (Halberstam, 2007), where the term ‘queer’
means that such features incorporate a politically subversive
narrative which is cleverly disguised in a popular media form aimed
at children. For instance, according to Halberstam the CGI
animated film of 2003, Finding Nemo, depicts the title character - a
motherless fish with a disabled fin – as a ‘disabled hero’ and links the
struggle of the rejected individual to larger struggles of the
dispossessed (Nemo leads a fish rebellion against the fishermen).
Halberstam proposes the term ‘Pixarvolt’ to indicate movies
depending upon Pixar technologies of animation and foregrounding
the themes of revolution and transformation. For her, the Pixarvolt

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 130

films use the individual character as a gateway to stories ‘of collective
action, anti-capitalist critique, group bonding and alternative
imaginings of community, space, embodiment and responsibility’
(Halberstam, 2007: non-pag.). In a sense, it could be said that the
monsters in Monsters vs Aliens yield themselves to a queer reading -
actually, queer references seem to have become quite commonplace
in animated features. For instance the Missing Link is a parody of
excessive masculinity (notwithstanding his machismo and his gung-
ho attitude to fight, he is comically out of shape) and has a gay bond
with Insectosaurus; the monsters perform part of their first battle
against Gallaxhar on a stolen San Francisco bus directed to the
Castro, and, even more tellingly, the transformation of Susan into a
monster frees her from all heterosexual social expectations and
places her in a queer alliance within other social outcasts.
Nevertheless, it is debatable whether the narrative of the film can be
read as subversive, since the monsters’ community seems not so
much to constitute an alternative to the mainstream society as a
weapon in the hands of the American government – although one
could argue that such subversive narratives are at their most
intriguing when they are apparently neutralized. As I will show in a
moment, the neutralization of the monsters in Monsters vs Aliens is in
fact only revealed as apparent if one focuses on their relationship
with technology.

3 In Of Grammatology (1976) Derrida famously shows how the
incest taboo is the unthought of structural anthropology – that is, a
concept that cannot be thought within the conceptual system of the
discipline because it escapes its basic opposition between nature and
culture. In fact, the incest taboo appears to be neither completely
natural nor totally cultural, thus constituting the ‘point of opacity’ of
structural anthropology. In turn, in Derrida’s words (1980) a point
of ‘opacity’ is a concept that escapes the foundations of the
conceptual system in which it is nevertheless located and for which it
remains unthinkable. For Derrida in every conceptual system we can
detect a concept that is unthinkable within the conceptual structure
of the system itself – therefore, it has to be excluded by the system,
or, rather, it must remain unthought to allow the system to exist. A
deconstructive reading looks for points of opacity – that is, for
points where the system ‘undoes itself’. For instance, a
deconstructive reading of a specific instance of technology would
therefore need to ask: what is it that has to remain unthought in
order for such technology to exist?

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 131

4 The report of the first NATO Conference on Software
Engineering, held in Garmisch from 7th to 11st October 1968, was
edited by Peter Naur and Brian Randell soon after the conference.
NATO was in charge of the actual printing and distribution, and the
report became available three months after the conference, in
January 1969 (Naur & Randell, 1969). The report of the second
conference, held in Rome from 27th to 31st October 1969, was edited
by John Buxton and Brian Randell, and published in April 1970
(Buxton & Randell, 1970). Both reports were later republished in
book form (Buxton, Naur & Randell, 1976). In 2001 Robert M.
McClure made both reports available for download in pdf format at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/.

The pagination of the pdf version slightly differs from the original
printed version. All the references made in this article are based on
the original pagination.

5 In the late 1960s the unit of measure for determining whether a
system was ‘large’ was the number of lines of code it contained. (A
large software system could include several thousands of lines of
code.) Another popular unit, still used nowadays, was the ‘man-
year’, that is the number of years an average programmer would
spend on the system if he or she were to develop that system by
themselves. A few years after the Garmisch conference, a sub-unit of
the man-year – the man-month - became the title of the classic of
Software Engineering, Frederick Brooks’ The Mythical Man-Month
(1995).

6 Heidegger’s understanding of technology is in turn deeply
connected to his philosophy of time. For Heidegger (1977) modern
technology is a form of calculation, and calculation has its roots in
our relation to the future, and in our attempt to determine future
possibilities, which we fear precisely because they appear
indeterminate. Heidegger describes this process as ‘anticipation’ or
‘concern’: our attempt to control the uncertainty of the future
creates the basis for calculation. Understood in a broader historical
context, this is what Heidegger identifies as the turning of Western
thought into calculation in the modern age. This is also why for
Heidegger technology has a central role in defining modernity.

7 HCI technologies aim at facilitating the use of computers by
human beings. They presuppose a certain model of the user that has
been criticized, for instance, by Matthew Fuller (2003). Fuller
highlights the narrowness of the model of the user embedded in

http://www.culturemachine.net/�
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 132

HCI, which he understands as ‘functionalist’ (Fuller, 2003: 13), or
represented in terms of functions performed, of tasks and efficiency.
Fuller is critical of such ‘idealization’ of the user and argues for a shift
from the model of the individualised user typical of standard HCI
towards different approaches, such as Participatory Design – where
users provide continuous feedback to programmers in a process of
cooperative design, and in general to some more ‘critical’ (or even
subversive) understandings of software. And yet what I want to
point out in this article is that the emergence of the ‘user’ in the
Garmisch conference report shows how the possibility of getting
important feedback from the users has always been present in the
theories and practices of Software Engineering, and that the ‘user’ is
inscribed in these theories and practices not just as an ‘idealization’
or a ‘function’ of the system, but as a constitutive force within the
process of software development.

8 Linux is a Unix-like operating system started in 1991 by Linus
Torvald. It is one of the most famous examples of open source
software.

9 According to Stiegler, contemporary technology is particularly
difficult to understand because it has a totally new relation with
time. He expresses this fact with the image of a technological device
that ‘goes faster than its own time’. Stiegler’s favoured analogy is that
of ‘a supersonic device, quicker than its own sound’, whose breaking
of the sound barrier provokes ‘a violent sonic boom, a sound shock’
(Stiegler, 1998: 15).

10 I am referring here to the alternative, non-Aristotelian tradition of
thought on technology that starts with Martin Heidegger and
includes Jacques Derrida and Bernard Stiegler, among others.
Timothy Clark (2000) calls this the tradition of ‘originary
technicity’ – a term he borrows from Richard Beardsworth (1996).
This term assumes a paradoxical character only if one remains
within the instrumental understanding of technology: if technology
were instrumental, it could not be originary – that is, constitutive of
the human. Thus, the concept of ‘originary technicity’ resists the
utilitarian conception of technology. The thinkers of ‘originary
technicity’ point out that technology is actually constitutive of
philosophy, since, by providing the support for the inscription of
memory, it allows for transcendence and therefore for thought.

11 I want to emphasize at this point that these observations are not
automatically valid for all software. Every instance of software needs

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 133

to be studied in its singularity, and problematized accordingly. What
is more, the opacity of software cannot be dispelled merely through
an analysis of what software ‘really is’ – for instance by saying that
software is ‘really’ just hardware (Kittler, 1995). Rather, one must
acknowledge that software is always both conceptualized according
to a metaphysical framework and capable of escaping it – and the
singular points of opacity of singular instances of software need to be
brought to light.

References

Beardsworth, R. (1996) Derrida and the Political, New York:
Routledge.

Bolter, J. D. (1984) Turing’s Man: Western Culture in the Computer
Age, London: Duckworth.

Brooks, F. P. (1995) The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Reading, MA: Addison-
Wesley.

Buxton, J. N., Naur, P., & Randell, B. (eds) (1976) Software
Engineering: Concepts and Techniques, New York: Petrocelli-Charter.

Buxton, J. N., & Randell, B. (eds) (1970) Software Engineering
Techniques: Report on a Conference Sponsored by the NATO Science
Committee, Rome, Italy, 27th to 31st October 1969, Birmingham:
NATO Science Committee.

Clark, T. (2000) ‘Deconstruction and Technology’, in N. Royle
(ed.), Deconstructions. A User’s Guide, Basingstoke: Palgrave, 238-
257.

Derrida, J. (1976) Of Grammatology, Baltimore: The Johns Hopkins
University Press.

Derrida, J. (1980) ‘Structure, Sign, and Play in the Discourse of the
Human Sciences’, in Writing and Difference, London: Routledge,
278-294.

Derrida, J. (1981) ‘Plato’s Pharmacy’, in Dissemination, Chicago, IL:
University of Chicago Press, 63-171.

http://www.culturemachine.net/�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 134

Derrida, J. (1985) ‘Letter to a Japanese Friend’, in R. Bernasconi &
D. Wood (eds), Derrida and Différance, Warwick: Parousia Press, 1-
5.

Derrida, J. & Stiegler, B. (2002) Echographies of Television: Filmed
Interviews, Cambridge: Polity Press.

Fuller, M. (2003) Behind the Blip: Essays on the Culture of Software,
New York: Autonomedia.

Galloway, A. (2004) Protocol: How Control Exists after
Decentralization, Cambridge, MA: MIT Press.

Habermas, J. (1991) The Theory of Communicative Action,
Cambridge: Polity Press.

Halberstam, J. (2007) ‘Pixarvolt: Animation and Revolt’, Flow
Journal 6 (6): non-pag., http://flowtv.org/?p=739.

Hansen, M. (2004) ‘“Realtime Synthesis” And The Différance of
The Body: Technocultural Studies In The Wake Of
Deconstruction”, Culture Machine 6: non-pag.,
http://www.culturemachine.net/index.php/cm/article/view/9/8.

Heidegger, M. (1977) The Question Concerning Technology and Other
Essays, New York: Harper and Row.

Kittler, F. A. (1995) ‘There Is No Software’, CTheory: non-pag.,
http://www.ctheory.net/articles.aspx?id=74.

Licklider, J. C. R. (1969) ‘Underestimates and Overexpectations’, in
A. Chayes & J. B. Wiesner (eds), ABM: An Evaluation of the Decision
to Deploy an Anti-Ballistic Missile System, New York: Signet: 118-129.

Mackenzie, A. (2003) ‘The Problem of Computer Code: Leviathan
or Common Power?’, non-pag.,
http://www.lancs.ac.uk/staff/mackenza/papers/code-leviathan.pdf.

Manovich, L. (2008) Software Takes Command,
http://lab.softwarestudies.com/2008/11/softbook.html.

Naur, P., & Randell, B. (eds) (1969) Software Engineering: Report on
a Conference Sponsored by the NATO Science Committee, Garmisch,

http://www.culturemachine.net/�
http://flowtv.org/?p=739�
http://www.culturemachine.net/index.php/cm/article/view/9/8�
http://www.ctheory.net/articles.aspx?id=74�
http://www.lancs.ac.uk/staff/mackenza/papers/code-leviathan.pdf�
http://lab.softwarestudies.com/2008/11/softbook.html�

FRABETTI • ’DOES IT WORK?’ CM 11 • 2010

www.culturemachine.net • 135

Germany, 7th to 11st October 1968, Brussels (Belgium): NATO
Scientific Affairs Division.

Randell, B. (1979) ‘Software Engineering in 1968’, Proceedings of the
IEEE 4th International Conference on Software Engineering, Munich: 1-
10.

Randell, B. (1998) ‘Memories of the NATO Software Engineering
Conferences’, IEEE Annals of the History of Computing 20(1): 51-
54.

Raymond, E. S. (2000) ‘The Cathedral and the Bazaar’, First Monday
3(3): non-pag.,
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/artic
le/view/578/499.

Reynolds, R. (1994) Super Heroes: A Modern Mythology, Jackson,
MS: University Press of Mississippi.

Shaw, M. (1989) ‘Remembrances of a Graduate Student’, Annals of
the History of Computing, Anecdotes Department, 11 (2): 141-143.

Shaw, M. (1990) ‘Prospects for an Engineering Discipline of
Software’, IEEE Software, 7 (6): 15-24.

Sommerville, I. (1995) Software Engineering, Harlow: Addison-
Wesley.

Stiegler, B. (1998) Technics and Time, 1: The Fault of Epimetheus,
Stanford, CA: Stanford University Press.

Stiegler, B. (2003) ‘Our Ailing Educational Institutions: The Global
Mnemotechnical System’, Culture Machine 5: non-pag.,
http://www.culturemachine.net/index.php/cm/article/view/258/2
43.

Filmography

Monsters vs Aliens (2009), directed by Rob Letterman and Conrad
Vernon.

The Net: The Unabomber, LSD and the Internet (2003), directed by
Lutz Dammbeck.

http://www.culturemachine.net/�
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499�
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499�
http://www.culturemachine.net/index.php/cm/article/view/258/243�
http://www.culturemachine.net/index.php/cm/article/view/258/243�
http://www.culturemachine.net/index.php/cm/article/view/258/243�

	’DOES IT WORK?’: THE UNFORESEEABLE CONSEQUENCES OF QUASI-FAILING TECHNOLOGY
	Federica Frabetti
	Randell, B. (1998) ‘Memories of the NATO Software Engineering Conferences’, IEEE Annals of the History of Computing 20(1): 51-54.
	Raymond, E. S. (2000) ‘The Cathedral and the Bazaar’, First Monday 3(3): non-pag.,
	Uhttp://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578/499U.

	Reynolds, R. (1994) Super Heroes: A Modern Mythology, Jackson, MS: University Press of Mississippi.
	Filmography

