

CULTURE MACHINE VOL 12 • 2011

www.culturemachine.net • 1

ON THE EMBODIED AESTHETICS OF CODE

Scott Dexter, Melissa Dolese,

Angelika Seidel, Aaron Kozbelt

Finally, a computer program only has one meaning: what it does. . . . Its entire

meaning is its function.
Ellen Ullman (Rosenberger, 1997)

I wouldn’t compare a program with the Mona Lisa, but it does have a simplicity

and elegance that’s quite handsome. Stylistic distinctions of different programs are
intriguing, very much like the differences art critics might see between Leonardo’s
Mona Lisa and a Van Gogh…When you write an algorithm using M expressions,

it’s so beautiful you almost feel it could be framed and hung on a wall.
Gary Kildall (Lammers, 1986/2006: 64)

If Ellen Ullman – a programmer – is right, then how do we make
sense of reports from other programmers – such as Gary Kildall – on
the aesthetic value of the code they read and write? Of course, a
significant aspect of the meaning of code derives from the human
interpretation of the computations being carried out when the code
executes: ‘an internal representation is merely the potential for what
may be manifest in the external representation’ (Laurel, 1998: 46).
But code – source code – itself carries rich representations and
meanings to those who know how to read and write it.

The artifacts designed by programmers are not material objects; at
most they are abstractions capturing some desired essence of their
material analogs. But the habits of thought of these programmers are
habits first cultivated through embodied experience in the material
world. As Christopher Kelty characterizes them, ‘Geeks live in
specific ways in time and space. They are not just users of
technology, or a “network society,” or a “virtual community,” but
embodied and imagining actors’ (Kelty, 2008: 77). It is this
embodiment, the specific ways of living in time and space common
to all humans, which ultimately provides the meanings – functional
and aesthetic alike – of source code.

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 2

In this paper we consider anecdotal and empirical evidence bearing
on the aesthetics of programming, placing these in dialog with
accounts of the embodied experience of programming and recent
studies of significance of the embodiment in the production of
meaning. We identify code, aesthetics, and embodiment as a fertile
nexus which may shed light on the nature of each and on the
relations among them. We close with a discussion of directions for
research which rely on empirical methodologies to inform the
aesthetic and embodied properties of code.

Code and aesthetics

Among both laypersons and scholars, aesthetics – as a mode of
experience or as a domain of intellectual inquiry – is usually
associated with the fine arts, rather than the sciences or technical
disciplines like software development. This bias, echoing C. P.
Snow’s (1960) famed ‘two cultures,’ remains evident both in
comprehensive accounts of scientific creativity (e.g., Feist, 2006;
Simonton, 2004), which hardly mention aesthetics, and in
mainstream research on aesthetics, where historically scholars have
focused on the fine arts (e.g., Leder et al., 2004; Levinson, 2003).

However, aesthetic experience, judgment, and preference need not
be confined to artistic, musical, or literary artifacts. Indeed, a
number of scholars have strongly suggested that aesthetic issues
apply just as well to scientific and technical domains (e.g., Curtin,
1982; Tauber, 1996; Wechsler, 1977), though this connection
remains largely unexplored through any rigorous methodology.
Much of the evidence in support of this claim comes from the first-
person reports of eminent mathematicians, scientists, and
technologists themselves. For instance, Hadamard (1954) collected
a number of such accounts from mathematicians, including eminent
figures such as Henri Poincaré, and argued from them that the roots
of creativity involve many unconscious processes, including the
aesthetically-based selection of ideas. The pioneering neurologist
Santiago Ramón y Cajal likewise emphasized this point, writing that
in neurology his ‘aesthetic instincts found full satisfaction at last’
(Ramón y Cajal, 1937/1989: 363). Eminent physicists such as Paul
Dirac (see Kragh & Hovis, 1993), Werner Heisenberg (1974) and
Subrahmanyan Chandrasekhar (1990) have also written on the
significance of beauty in doing physics. Chandrasekhar suggested

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 3

that aesthetic concerns may be a primary motivating factor for
scientists’ continued activity as well as a basis of theory choice:

It is, indeed, an incredible fact that what the
human mind, at its deepest and most profound,
perceives as beautiful finds its realization in
external nature. What is intelligible is also
beautiful. We may well ask: how does it happen
that beauty in the exact sciences becomes
recognizable even before it is understood in detail
and before it can be rationally demonstrated? In
what does this power of illumination consist?
(Chandrasekhar, 1990: 66)

Root-Bernstein (2002) makes a stronger claim, asserted that all
human inventions, stemming from science, engineering, or
mathematics, have the potential to evoke aesthetic responses that
are the same as those evoked by the arts, and that the drive to
experience beauty has often resulted in great scientific research.

An emphasis on aesthetics also strongly characterizes many
computer programmers’ and software developers’ accounts of their
domain. As in other scientific domains, anecdotal first-person
accounts (e.g., collections by Lammers, 1986/2006; Oram &
Wilson, 2007) have been the main source of evidence bearing on
this issue. Interestingly, programmers’ own descriptions of the role
of aesthetics in software are close in character to characterizations
from fine arts domains and, indeed, often cite such domains as direct
analogies. Charles Simonyi, who oversaw the development of
flagship Microsoft products such as Office and Excel, observed:

Some people have different opinions about what
makes the structure [of a program] beautiful.
There are purists who think only structured
programming with certain very simple
constructions, used in a very strict mathematical
fashion, is beautiful. . . . But to me, programs can
be beautiful even if they do not follow those
concepts if they have other redeeming features.
It’s like comparing modern poetry with classical
poetry. (Lammers, 1986/2006: 13)

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 4

Similarly, Brian Kernighan, one of the designers of the programming
language AWK, noted the analogous relationship between writing
program code and writing English prose:

In both text and programs, I tend to work over the
material many times until it feels right. There’s a
lot more of this in prose, of course, but it’s the
same desire, to have the words or the code be as
clear and clean as possible. (Biancuzzi & Warden,
2009: 118)

C. Wayne Ratliff, who designed and managed the dBASE series of
database systems, emphasized the diagnostic value of balance, which
echoes the notion of compositional balance in painting (Arnheim,
1988; Locher & Nagy, 1996), and his comments suggest a
connection between aesthetic judgment and functional assessment:

If you write a program well, it’s very elegant; it
sings, it’s well built. I enjoy it from an engineering
point of view, just like a well-built car, a well-built
bridge, or a well-built building. Everything about
it seems in balance, tuned. . . . When things get
really out of balance, you know something is
wrong. There’s probably some inherent fault that
makes it out of balance. (Lammers, 1986/2006:
120)

Such anecdotal reports, which represent a thread running through
many programmers’ reflections on their craft, reinforce the need to
better understand and integrate aesthetic considerations into the
creative activity of scientific and technical domains. These accounts
may also be connected to perspectives from the philosophy of
science, such as that of James McAllister (1996), who suggested that
any property of a scientific theory might be regarded as aesthetic ‘if
scientists in the relevant disciplines react to [the property] publicly
as aesthetic, for example by . . . applying to it standard terms of
aesthetic appreciation, such as “beautiful,” “elegant,” “pleasing,” or
“ugly”’ (McAllister, 1996: 36).

McAllister further argued that the doctrine, espoused by several
prominent scientists such as Chandrasekhar and Heisenberg, that
beauty is an attribute of truth implies an agreement between an
entity’s perceptual aspects and its utilitarian qualities. That is, the
beauty of a theory may evidence its proximity to the truth, and

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 5

therefore aesthetic criteria may effectively indicate scientific utility.
But ideas of scientific utility (particularly the productive potential of
a theory) evolve, and aesthetic canons must follow suit, in what
McAllister terms ‘aesthetic induction’. This echoes the response of
architecture or industrial design, for example, to concerns of
utilitarian performance. In both cases, the demonstrated practical
worth of a work – the empirical success of a scientific theory or the
utility of a building – can contribute to reshaping the basis of
aesthetic canons on which subsequent contributions are evaluated.

Davies (2006) framed the connection between aesthetics and
functionality similarly, positing that for any utilitarian object with
aesthetic features that are not trivial or incidental, aesthetic appraisal
is related to that object’s function. An object is ‘functionally
beautiful’ to the extent that its aesthetic properties contribute to its
overall performance – the functional beauty of an object enhances
its fulfilling its primary function. So, for example, a ‘beautiful chair is
one having features that make it graceful and stylish and, at the same
time, comfortable to sit on, stable and supportive of the back’ (2006:
237). These views resonate with Kildall’s suggestion that, in code,
not only does functionality reside in the brute performance of a
program, but also, in a fundamental way, in the aesthetic dimensions
of the program that enable it to be appreciated, repaired, or modified
by other programmers.

Based on arguments from the philosophy of science as well as
firsthand accounts by scientists and technologists themselves, there
are reasons to believe that the products of science and technology,
including software code, can exhibit aesthetic properties and induce
aesthetic experiences. However, quoting Chandrasekhar or Dirac
among physicists, or Ratliff or Simonyi among software developers,
does not necessarily reveal the extent to which aesthetic
considerations are a pervasive aspect of scientific or technical
thinking. Perhaps aesthetic aspects of science are mainly
characteristic of only the greatest practitioners, perhaps at the
moments of their greatest discoveries. Alternatively, aesthetic
concerns may be relatively common in scientific or technical
domains, at least among those with the requisite expertise to
appreciate potential instances of beauty in a domain.

However, some initial quantitative research appears to confirm that
basic claims about the importance of aesthetics, such as those made
by programmers above, appear to be fairly representative of
programmers’ experiences. A recent empirical investigation

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 6

(Kozbelt et al., 2010) addressed the issues of the frequency, nature,
time course, and judgment criteria of aesthetic experience among 50
software developers with varying levels of experience. These
programmers reported having fairly frequent aesthetic experiences
with code, though somewhat less often and intensely than with other
creative artifacts, such as paintings. Overall, participants reported
that in their experience, judgments of ‘ugly’ code were made faster
than those of ‘beautiful’ code, which in turn were made faster than
those of ‘correct’ code. Aesthetic considerations of code were rated
as quite important, though not as important as functionality. Finally,
judgments of the relative importance of various aesthetic judgment
criteria were highly correlated among experts and novices alike.
These results corroborate many of the anecdotal claims made about
aesthetics and code in the software literature. Moreover, this study
suggests that a quantitative approach to studying aesthetics and code
is a fruitful research direction, with potentially trans-domain
implications for aesthetics and creativity.

Code and embodiment

We now turn to the relation between code and the notion of
embodiment, which, we argue, is a relation central to the full
understanding of code’s meaning, and one historically undervalued.
Programmers know all about the sensation of disembodiment:

Among the five assembler programmers of the
project team there was one who one night sat
down at the terminal, got glassy eyes, and slipped
into a mental state in which he could not be talked
to any more. . . . Among his colleagues the man
was called the ‘trance programmer.’ He once
commented . . . ‘You could fire a cannon next to
me and it would not bother me.’ (Molzberger,
1983: 247)

This is but an extreme example of a phenomenon familiar to any
seasoned programmer – the intense mental focus on a complex and
evolving abstraction which results in a temporary experience of
something akin to disembodiment.1 Presumably, it is the desire to
maintain this state for as long as possible which leads programmers
to such apocryphal acts of bodily neglect as subsisting on pizza and
soda, deferring routine hygiene, and sleeping under their desks.
(Conversely, programmers’ employers, perhaps most famously

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 7

Google, are noted and lauded for making it possible for
programmers to tend to (most of) the needs arising from
embodiment, ranging from massage to laundry, while at work.)

Yet in the context of software development, the question of
embodiment is not just an irritating distraction. From the earliest
days of machine computation, programmers and philosophers alike
have speculated about the transhumanist possibility of superior
intelligences freed from bodies as we know them—whether in the
form of autonomous machine intelligence or in the form of some
sort of chassis into which we could upload our individual
intelligences. The question of whether this is possible haunts many
discussions of programmer culture. Kelty’s (2008) Two Bits: The
Cultural Significance of Free Software, for example, is primarily a study
of, indeed, the cultural significance of free software. Yet, as Kelty
explains, he finds ‘certain aspects of transhumanism are present
across the spectrum of engineers, scientists, and geeks’ (321). That
is, while few programmers may ardently anticipate a Great
Uploading, transhumanist beliefs that technological interventions
may and should destabilize culture and politics are ‘widespread
among technically adept individuals’ (87). Mitch Kapor, a
technologist and investor perhaps best known as the founder of
Lotus Corporation, is a notable exception. He explains his
pessimism about the prospect of human-level machine intelligence:

As humans. . . we are embodied creatures; our
physicality grounds us and defines our existence
in a myriad of ways. . . . Emotion is as or more
basic than cognition; feelings, gross and subtle,
bound and shape the envelope of what is
thinkable. . . . When I contemplate human beings
in this way, it becomes extremely difficult even to
imagine what it would mean for a computer to
perform [being human]. (Kapor, 2002)

Some of the most compelling metaphors for the practice of
programming itself arise from this embodiment, this physicality.
Veteran programmer and poet Richard Gabriel has suggested
‘habitability’ as a major design goal for any programming project:
‘Habitability makes a place livable, like home. And this is what we
want in software—that developers feel at home, can place their
hands on any item without having to think deeply about where it is.
It’s something like clarity, but clarity is too hard to come by’
(Gabriel, 1996: 11). While this notion appears at first to be just

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 8

another analogy between software and architecture (indeed, Gabriel
draws no little inspiration from the work of architect Christopher
Alexander), it is more: it is an assertion that programming is itself a
profoundly embodied practice, that the process of designing and
building a program is informed by our embodied experience with
and within other, materially instantiated, functional designs. This
perspective continues to drive research into software engineering
tools and techniques, such as the work of Wettel & Lanza, who have
developed a ‘3D visualization of software systems hinging on the city
metaphor’ (2007: 1).

More generally, programmers’ own accounts of their activities and
experiences (e.g., Lammers, 1986/2006; Oram & Wilson, 2007) are
replete with terms like ‘balance,’ ‘flow,’ ‘natural,’ and ‘flexible,’ which
are terms based, however unconsciously, on human embodied
reality. That is, these accounts are drawn, ultimately, from the fact
that human beings have material bodies that move through time and
space. This is a generally well-known fact, though one historically
discounted in studies not only of programming but of human
cognition construed most broadly. Recent scholarship on
embodiment has shown that it has enormous implications for the
nature of human thinking and bears on many venerable
philosophical issues (Lakoff & Johnson, 1999). The modern study
of embodied cognition can be traced back to scholars such as
Bourdieu (1977) and Mauss (1979), who described the ways values
become ‘embodied’; since then, embodiment has become a major
theme contemporary psychology and cognitive science. Empirical
research on embodiment has revealed its substantial impact on
mental processes, including perception, memory, language,
emotion, and social cognition (see, e.g., Boroditsky & Ramscar,
2002; Markman & Brendl, 2005; Niedenthal et al., 2005). The
demonstrated power of this framework suggests that it may be
fruitfully applied in analysing a variety of domains, including some –
like mathematics and computer science – in which embodiment has
been held to be at best an irrelevance and at worst a nuisance (e.g.,
Kapor, 2002).

The embodied foundations of programming share much with the
embodied foundations of mathematics: ‘Our mathematics of
calculation and the notation we do it in is chosen for bodily reasons .
. . [but] the algorithm, being freed from meaning and understanding,
can be implemented in a physical machine called a computer, a
machine that can calculate everything perfectly without
understanding anything at all’ (Lakoff & Nuñez, 2000: 86). That is,

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 9

while an implementation of an algorithm may be perceived at some
level as being simply rote calculation, its grounding in meaning
arises from human embodiment.

Lakoff and Nuñez, in their treatment of the embodied origin of
mathematics, describe a ‘Romance of Mathematics,’ which they seek
to dispel, characterizing it as ‘not a story with a wholly positive
effect’ (2000: 340). Among the premises they ascribe to this
mythology are ‘Mathematics is abstract and disembodied – yet it is
real’ (xv) and ‘Mathematics has an objective existence . . .
independent of and transcending the existence of human beings or
any beings at all’ (xv). From these and other premises, they suggest,
it is natural to conclude that ‘Because mathematics is disembodied
and reason is a form of mathematical logic, reason itself is
disembodied. Hence, machines can, in principle, think’ (xv).

That is to say, from the Romance of Mathematics we may derive a
similarly flawed ‘Romance of Computation,’ in which computation
exists outside of and independent from human experience, and
substantially orders the universe in ways beyond our ken and
control. Yet, as Lakoff and Nuñez demonstrate in great detail, there
is no evidence (nor can there be any) for a truly disembodied
mathematics.

Indeed, the early tradition of cognitive science was based exactly on
such a Romance of Computation. As Mark Johnson describes it:

For classical cognitive science, it is assumed that
cognition consists of the application of universal
logical and formal rules that govern the
manipulation of ‘internal’ mental symbols,
symbols that are supposedly capable of
representing states of affairs in the ‘external’
world. . . . The internal/external split that
underlies this view presupposes that [the internal
language of thought] could be detached from the
nature and functioning of specific bodily
organisms, from the environments they inhabit,
and from the problems that provoke cognition.
Given this view it would follow that cognition
could take place in any number of suitable media,
such as a human brain or a computing machine.
This theoretical viewpoint was instrumental in the
development of the first electronic calculating

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 10

machines and general-purpose computers.
(Johnson, 2007: 119)

Johnson goes on to argue that even logical inference is grounded,
through metaphor, in human embodiment:

[T]he logic of our bodily experience provides all
the logic we need in order to perform every
rational inference, even with the most abstract
concepts. In our metaphor-based reasoning, the
inferences are carried out according to the
corporeal logic of our sensorimotor capacities,
and then, via [a] source-to-target mapping, the
corresponding logical inferences are drawn in the
target domain. (179)

Embodiment and the modern conception of computation are in a
continually productive state of mutual destabilization. Alan Turing’s
originary formulation of a computing machine makes a metaphoric
leap from the embodied action of humans manually performing
calculations to an abstracted mechanical process.2 The resulting
mantra that cognition is computation, promulgated by early
cognitive science researchers, defined thought in exactly those terms
that could be instantiated by the digital computer, downplaying
significant other aspects of the human mind, such as motivation,
emotion, and cross-cultural differences (e.g., Gardner, 1987).
Because the operations of these machines have no apparent meaning
outside of human activity, it is easy to conclude, as Ellen Ullman did,
that the meaning of a program is identical to the human-interpreted
result of its function: once the ‘internal’ mental symbols are brought
outside the body, the crucial connection with ‘external’ states is
severed, the ‘internal’ symbols all but vanish as they are stripped of
their meaning, and we are left with machines which, with a
compelling illusion of near-autonomy, traverse a wide range of
meaning-laden states. To begin to repair this flawed scheme and
recover some meanings of code, we must identify and develop some
new formulation for the embodied meaning of computation,
perhaps echoing the historical trajectory of the metaphors of
software from being based closely on the machinic ‘body’ to those
derived from human embodied experience.

From early programs which directly specified how the knobs and
switches on the computing machine should be set, to more
advanced techniques allowing programmers to write programs as

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 11

sequences of 0s and 1s (using symbolic notation, which could be
stored and retrieved by the machine, to represent machine
configurations), to contemporary techniques intended increasingly
to permit the description of computations in ‘human-readable’
terms, a driving force in the evolution of programming has been the
creation of tools, techniques, and computing hardware which permit
programmers to be increasingly ignorant of the material realities of
the machine, focusing instead on the abstractions they create and
manipulate. As Bjarne Stroustrop, designer of the C++ language,
says:

‘close to the hardware’ means that the model of
computation is that of the computer—sequences
of objects in memory and operations as defined
on objects of fixed size—rather than some
mathematical abstraction. That is true for both
C++ and Java, but not for functional languages.3 . .
. The real problem is how to get from the human
conception of problems and solutions to the
machine’s limited world. You can ‘ignore’ the
human concerns and end up with machine code . .
. . You can ignore the machine and come up with a
beautiful abstraction that can do anything at
extraordinary cost and/or lack of intellectual rigor
(Biancuzzi & Warden, 2009: 5).

At its root, software is a supreme act of metaphor: the manipulation
of abstractions in contemporary programs is guided and governed
by interleaved layers of metaphor. The design of the C language, for
instance, encourages programmers to think of their programs as
sequences of instructions which store, retrieve, and manipulate
values stored within a homogeneous linear sequence of storage cells.
The LISP programming language encourages programmers to think
of programs simply (yet amazingly powerfully) as lists of values;
seasoned LISP programmers in fact use LISP to create ad hoc
languages based, as closely as they wish, on the particular metaphors
informing their problem domain. Programs in Prolog are collections
of ‘facts’ and ‘rules’ which are ‘queried’ to provoke a computation.
The ‘object-oriented’ programming paradigm asks programmers to
organize their programs as collections of interacting ‘objects’ (which
bear some metaphoric resemblance to physical objects). These
metaphors do not simply provide a way to think about
programming, but tend to structure programmers’ thought about
the computational process itself. As Robin Milner, designer of the

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 12

ML language, observed, ‘[S]ome languages . . . actually influence the
way that the programmer thinks about the task. Object-oriented
languages have done very well from this viewpoint, because the
notion of object helps to clarify thought in a remarkable variety of
applications’ (Biancuzzi & Warden, 2009: 213).

As Johnson shows, such metaphors, even though they operate at a
very high level of abstraction, are rooted in the neural structures
which attend to the sensorimotor aspects of our embodied
experience. In the balance of this paper, we aim to establish some
connections between the embodied roots of programming and the
embodied roots of aesthetic meaning.

Embodiment and aesthetics

The aesthetic meanings of code are demonstrably significant to
programmers: the aesthetic qualities of code are popular topics of
discussions of code both online and in traditionally published work;
adherents of different programming languages have been known to
contend, sometimes quite aggressively, to show the aesthetic
superiority of their chosen language (e.g, ‘[emacs] is written in LISP,
which is the only computer language that is beautiful’ (Stephenson,
1999: 96)); as we argued above, there is some reason to believe that
such aesthetic judgments are components of the various assessments
programmers make throughout the development process.
Embodiment, too, plays a foundational if vexed role in determining
the meaning of computation, and of code in particular. In this
section, we review recent scholarship on the grounding of aesthetics
in embodiment more generally, with a view toward outlining
possible ways of empirically exploring the relations among these
(and other) constructs in software development.

The most sophisticated aesthetic judgments of code are made within
the metaphoric frameworks which define the language in which the
code is written. Sometimes, aesthetic judgments of code are targeted
especially at the algorithm being implemented.4 Or, aesthetic
judgments may be targeted at stylistic concerns, of textual
formatting, naming conventions, or documentation. But the most
intriguing judgments have to do with the choices made with respect
to the organizing metaphor(s) in play.

A C program might make especially clever or efficient use of the
underlying machine model, as in Warren’s treatment of the

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 13

‘fundamental’ yet ‘deceptively simple’ operation of counting the
number of a memory cell’s bits which have the value 1, an operation
known as ‘population count’ (Warren, 2007: 147). Warren
considers a range of algorithms and their implementations, explicitly
assuming a machine model which ‘has the fundamental instructions
generally found on a RISC or CISC computer: shift, add, and, load,
conditional branch, and so forth’ (147). The solutions he considers
have, he asserts, ‘some beauty to an eye that values efficiency,
conciseness, and useful cleverness’ (149), though, as he notes,
programs that are too tightly dependent on the specifics of the
machine may lose some aesthetic value. Warren shows that one
algorithm may be expressed in C code as

x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x & 0x0F0F0F0F) + ((x >> 4) & x0F0F0F0F);
x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
x = (x & 0x0000FFFF) + ((x >> 16) & 0x0000FFFF);

but immediately offers the ‘simplification’

int pop (unsigned x) {
 x = x – ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = (x + (x >> 4) & 0x0F0F0F0F;
 x = x + (x >> 8);
 x = x + (x >> 16);
 return x & 0x0000003F;
}

observing ‘Unfortunately, the [second implementation] has lost
most of the regularity and elegance of the code from which it was
derived. A consequence of this is that it is no longer immediately
clear how to extend the code to a 64-bit machine. But it’s hard to
pass up all those opportunities to save instructions!’ (150-151).

An object-oriented program might rest on an especially apt
framework of objects, as in Otte & Schmidt’s (2007) C++ code for a
networked logging service. In this case, ‘the beauty of [the] solution
stems from its use of patterns and [object-oriented] techniques to
balance key domain forces, such as reusability, extensibility, and
performance. In particular, [this] approach enables developers to
identify common design/programming artifacts, [and] . . . also
provide[s] a mean to encapsulate variabilities in a common and
parameterizable way’ (431). That is, the beauty of their approach
inheres in the way object-oriented metaphors are marshaled
explicitly to conceal the specifics of a particular machine. ‘[O]bject-
oriented languages . . . combined with patterns (such as Wrapper

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 14

Facades, Adapters and the Template Method), and frameworks
(such as host infrastructure middleware like ACE and the Java class
libraries for network programming) . . . mask syntactic and semantic
differences between platforms . . . [allowing developers to avoid]
wrestling with the accidental complexities of programming the low-
level networking and O[perating] S[ystem] infrastructure’ (430).
Some of these advantages are demonstrated in this fragment of
code:

 template <typename ACCEPTOR, typename MUTEX> void
 Logging_Server<ACCEPTOR, MUTEX>::run (void) {
 try {
 // Step 1: initialize an IPC factory endpoint to listen for
 // new connections on the server address.
 open ();

 // Step 2: Go into an event loop
 for (;;) {
 // Step 2a: wait for new connections or log records
 // to arrive.

 wait_for_multiple_events ();

 // Step 2b: accept a new connection (if available)

 handle_connections ();

 // Step 2c: process received log record (if available)

 handle_data ();
 }
 } catch (...) { /* ... Handle the exception ... */ }
}

Beauty inheres specifically in this code (and the code it invokes or
structurally prefigures) because of both the ‘pattern-based design’
for handling ‘variation in concurrency models’ by ‘providing specific
implementations’ of methods such as wait_for_multiple_events ()
and the ‘template-based design’ for handling ‘variation in . . .
synchronization mechanisms’ by ‘plugging different types into the
ACCEPTOR and MUTEX template parameters’ (439).

Or, a LISP program may make effective use of its broad facilities for
manipulating language. Dybvig (2007) explicates and extends a
‘hygienic macro expansion algorithm’, which he characterizes as
‘both clever and elegant’ (414). This algorithm is a technique for
allowing LISP programs to manipulate LISP source code, so, ‘the
most important aspect of the [extended] mechanism is its abstract
representation of program source code as syntax objects’ (414). That
is, the code Dybvig writes about is informed by LISP’s deep affinity
for the formal aspects of language, specifically, the especially porous

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 15

boundary between the language of the code being written and the
language of the syntactic objects being manipulated by the code.
The depth of the metaphor of language in this example (which is
characteristic more generally of LISP’s strengths) means that the
particular beauty of the code implementing this algorithm does not
leap from the page straight into the eye of the non-LISP-fluent
reader. However, this is no constraint on its capacity to elicit
aesthetic responses, Dybvig suggests, as ‘there can still be beauty in
complex software as long as it is well structured and does what it is
intended to do’ (428).

This brief foray into some actual source code adds weight to our
claim that source code is shot through with metaphor, whether the
metaphor of the computing machine; metaphors of objects,
patterns, and frameworks based on concepts like ‘wrapper,’ ‘facade’,
and ‘template’; or the metaphor of formal language itself; and that
these metaphors are both grounded in embodiment and themselves
ground aesthetic responses to code.

This returns us to our fundamental concerns about the interplay
among code, aesthetics, and embodiment. The pervasiveness of
aesthetic experience across a broad range of domains, modalities,
and kinds of human and natural artifacts (see, e.g., Saito, 2008)
suggests a very general underpinning for human aesthetics, one
whose certain identification lies well beyond the compass of this
paper. But there are possible answers. For instance, the emerging
domain of ‘neuroaesthetics’ argues that aesthetic experience may be
fruitfully understood in terms of the capacity of, say, works of art, to
stimulate (or titillate) the mind in a way that evokes aesthetic
pleasure at the level of brain structures and processes (see Kozbelt,
in press); this would be one means of grounding aesthetic
experience in a more or less universal terms (as opposed to those
which are strongly culturally determined).

However, thinking more broadly than just the nervous system, the
notion of embodiment described earlier may serve as a
complementary means of fundamentally grounding aesthetic
experience. Johnson (2007) argued that everything we deem
aesthetic involves an experience in which we have the capacity to
make and experience meaning, and that we do so through our
visceral, embodied connections with the world. Through bodily
perceptions, movements through space, and emotion it becomes
possible for meaning to be formed and for aesthetic experiences to
occur. In fact, meaning and aesthetic experience may be more

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 16

closely identified than we suspect: ‘[T]he structures processes, and
qualities that make art possible and valuable are exactly the same
ones that constitute all meaning, thought, and understanding. . . .
[T]hese aspects of embodied meaning are not, for the most part
propositional, and it therefore follows that meaning cannot be
primarily linguaform and propositional’ (Johnson, 2007: 213).

In other words, beauty is not just a characteristic of an object; it is a
felt experience. This may play out in all manner of domains and
modalities. For instance, Johnson (2007) proposed that music is a
‘presentation and enactment of felt experience’ (238): the tension
that is felt in music is possible through the listener’s engagement as
they experience their own bodily sensations of tension. The
identification of a creative artifact or an everyday happening as
eliciting or enacting a felt experience could warrant an exclamation
of beauty. Even negative responses, such as anger and disgust (Silvia
& Brown, 2007), qualify as aesthetic due to their embodied nature:
the valuation of an object as disgusting is felt as a gustatory response
in the beholder.

Code may appear to some to be among the most ‘linguaform and
propositional’ modes of contemporary human expression and, thus,
completely unsuitable for attaching completely different forms of
meaning. But, as we have shown, the development of modern
programming depends absolutely on a complex scaffolding of
metaphor and non-propositional meaning drawn from the roots of
embodied human experience. It is this accretion of meanings that
form the basis, and provide the significance, of aesthetic judgments
of code.

Synergies

Aesthetics, code, and embodiment synergistically interact in
fundamental ways, which are far from fully understood. To our
knowledge, theoretical discussions of the three-fold relations
between aesthetics, code, and embodiment remain rather
embryonic to date; empirical research is even scarcer. Pursuit of the
nature of these manifold interactions will, we expect, yield not only
specific results informing the nature of this intersection but also
broader and richer accounts of all three concepts.

The functional role of aesthetics plays out most richly when
contextualized as part of the creative process of software

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 17

development. For instance, the rather interesting empirical finding
that programmers report being more quickly able to discern beauty
than correctness (Kozbelt et al., 2010) suggests that aesthetic-laden
evaluative processes may drive judgment and decision making about
software code – potentially both as final products and works-in-
progress. Specifically, a creative process geared toward high
efficiency could well emphasize more intuitive, affective,
aesthetically-motivated judgment criteria over more logical,
conscious, attention-demanding strategies (see also Perkins, 1981).
Indeed, since Kozbelt et al found that judgments of ugly code were
reportedly made even faster than those of beautiful code, this
aesthetic mode may be particularly useful for detecting problems in
a program.

The links between aesthetics and creativity are both intuitive and
well-appreciated. In contrast, our understanding of the relationship
between embodiment and creativity remains rather
underdeveloped; however, there are prospects for fruitful dialogue.
In terms of forging connections between these two literatures,
probably the most direct approach is via the nature of metaphor,
which has strong traditional links to the notion of embodiment (e.g.,
Lakoff & Johnson, 1980); moreover, in the creativity literature,
metaphor is often discussed as a fundamental mechanism of creative
thought, together with processes like conceptual combination,
conceptual expansion, and mental imagery (Ward et al, 1997). In a
related vein, Gibbs (2005) describes instances of scientific and
artistic creativity stemming from kinesthetic imagery and other
embodied sources.

Methodologically, the most likely means of gaining evidence bearing
on all of these issues is the technique of concurrent verbal protocol
analysis (Ericsson & Simon, 1984), in which persons verbalize their
conscious thoughts, without undue interpretation, as they work to
solve some problem in the laboratory. Typically, the verbalizations
are recorded, transcribed, parsed, and coded for the frequency of
various categories of statements of interest. For instance, the kind of
language used by programmers in edited collections (e.g., Lammers,
1986/2006; Oram & Wilson, 2007) reflecting aesthetic or
embodiment or metaphoric themes could be readily used to
construct a coding system for such statements. Contextualized in a
creative problem solving task, such as editing poorly-written or ugly
code, this would provide a dynamic window on the cognitive
processes involved in the creation of software. Doing so would not
only yield basic information about the frequency of spontaneous

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 18

utterances bearing on aesthetic or embodiment themes, but also
how that information is used in a dynamic creative problem solving
context. For instance, do some themes emerge mainly in groping
toward a first conceptualization of problem or a prospective
solution, as a means of diagnosing or characterizing bugs or
suboptimal solutions, of dynamically evaluating the performance of
code (either positively or negatively), of formatting or otherwise
packaging code in a way that is useful to other programmers (e.g., in
collaborations or in free and open source environments), or in other
ways?

It may be especially interesting to examine the role of embodiment
via analysis of programmers’ deployment of metaphor throughout
the various tasks of software development. To the extent that
programmers utilize metaphors in their creative problem solving, to
what extent is there variation in the kinds of metaphors used? Does
the notion of embodiment as a way of grounding aesthetics and
metaphor presuppose a relatively unitary basis for metaphors, and
thus a relatively unitary, constrained, or homogeneous basis for
metaphoric reasoning, or is there scope for wider variation across
individuals, across tasks, across metaphoric frameworks? Are there
meaningful relationships between the founding metaphors of a
programming language, the metaphors programmers use to frame
and solve problems in that language? Milner’s assertion about the
power of object-oriented language to shape thought is echoed in the
‘folk wisdom’ that undergirds much of programmers’ banter about
language choice. For instance, one account of the rivalry between
Perl adherents and Python adherents includes the characterizations,
‘Perlites are chaotic/good trickster archetypes . . . [while]
Pythonistas are peaceful, have-their-glasses-on-a-little-string types,
like hobbits or the Dutch’ (NTK 2004). While matching software
development approaches with Dungeons and Dragons character
types is likely a playful oversimplification, there may nonetheless be
seeds here of software development methodologies which
intentionally exploit the embodied dimensions of the code being
produced, harnessing aesthetic judgment and other non-
propositional forms of meaning and experience towards the
production of code that is more fully habitable.

Of course this trajectory of study may also reveal new dimensions of
embodiment, aesthetics, and metaphor, if we focus on these, rather
than code itself, as our primary domains of inquiry. The flawed
duality of the notion of disembodied cognition birthed with the
modern computing machine has much to do with computer

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 19

science’s founding confusion in which, as Mark Poster describes it,
‘the scientist projects intelligent subjectivity onto the computer and
the computer then becomes the criterion by which to define
intelligence, judge the scientist, outline the essence of humanity’
(Poster, 1990: 148). While the focus of the ‘digital humanities’ on
using computers as analytic/diagnostic tools for such aesthetic
objects as may be reduced to digitized data, we propose the use of
code as a vehicle by which we may decouple the machine from
cognition, thereby coming to a deeper understanding of the
phenomena which undergird meaning.

Endnotes

This work is funded in part by the US National Science Foundation,
project number 0855861. The material presented here does not
necessarily reflect the views of the National Science Foundation.

1 In all likelihood, the phenomenon being described is what
Csikszentmihalyi (1991) terms ‘flow,’ an experience with a number
of characteristics including, sometimes, lack of bodily awareness and
a suspension of the sense of the passage of time. Programmers’
accounts of flow-like states tend to emphasize the locus of the
experience as mental, with their bodies, sense perceptions, and so
on, elsewhere or unavailable.

2 See, for example, Grier (2007), on the history of human
‘computers’ (i.e., persons employed to manually perform numerical
calculations with pencil and paper), which long pre-dates the
modern history of electro-mechanical computers.

3 Functional languages emphasize the idea of computation as the
evaluation of mathematical functions, rather than the execution of a
sequence of operations. Functional programs rarely include
reference to underlying machinic structures.

4 Even the notion of algorithm itself is grounded bodily: ‘The very
idea of an algorithmic process of calculation involves a starting
point, a process that may or may not iterative, and a well-defined
completion’ (Lakoff and Nuñez, 2000: 37), which closely resembles
the ‘programs’ carried out by our neural motor-control structures.

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 20

References

Arnheim, R. (1988) The Power of the Center. Berkeley: University of
California Press.

Biancuzzi, F., & Warden, S. (2009) Masterminds of Programming.
Sebastopol, CA: O’Reilly Media.

Boroditsky, L. & Ramscar, M. (2002) ‘The Roles of Body and Mind
in Abstract Thought’, Psychological Science 13: 185-189.

Bourdieu, P. (1977) Outline of a Theory of Practice. Cambridge:
Cambridge University Press.

Chandrasekhar, S. (1990) Truth and Beauty: Aesthetics and
Motivations in Science. Chicago: University of Chicago Press.

Couger, J. D. et al. (1991) ‘Using a Bottom-Up Approach to
Creativity Improvement in Information Systems Development’,
Journal of Systems Management 42: 23-36.

Curtin, D. W. (ed.) (1982) The Aesthetic Dimension of Science: 1980
Nobel Conference. New York: Philosophical Library.

Csikszentmihalyi, M. (1990) Flow: The Psychology of Optimal
Experience. New York: Harper and Row.

Dybvig, R. K. (2007) ‘Syntax Abstraction: The syntax-case
Expander’, in Beautiful Code, (eds) Oram, A. & Wilson, G.
Sebastopol: O’Reilly Media.

Ericsson, K. A. & Simon, H. A. (1984) Protocol Analysis: Verbal
Reports as Data. Cambridge: MIT Press.

Feist, G. J. (2006) The Psychology of Science and the Origins of the
Scientific Mind. New Haven: Yale University Press.

Gardner, H. E. (1987) The Mind’s New Science: A History of the
Cognitive Revolution. New York: Basic Books.

Glass, R. L. (2006) Software Creativity 2.0. Atlanta: Developer
Books.

http://www.culturemachine.net/�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 21

Gibbs, R. W. (2005) Embodiment and Cognitive Science. New York:
Cambridge University Press.
Grier, D.A. (2007) When Computers Were Human. Princeton:
Princeton University Press.

Hadamard, J. (1954) The Psychology of Invention in the Mathematical
Field. New York: Dover.

Heisenberg, W. (1974) ‘The Meaning of Beauty in the Exact
Sciences’, in Across the Frontiers, (ed.) R. Nanda. New York: Harper
and Row.

Johnson, M. (2007) The Meaning of the Body: Aesthetics of Human
Understanding. Chicago: The University of Chicago Press.

Kapor, M. (2002) http://www.longbets.org/1.

Kozbelt, A. (in press) ‘Neuroaesthetics: Where Things Stand Now’,
The Evolutionary Review.

Kozbelt, A. et al. (2010) ‘Beautiful Software: Characterizing
Aesthetic Judgment Criteria of Code Among Expert and Novice
Computer Programmers’, given at the 2010 Biannual Meeting of the
International Association of Empirical Aesthetics, Dresden,
Germany.

Lakoff, G., & Johnson, M. (1999) Philosophy in the Flesh: The
Embodied Mind and its Challenge to Western Thought. New York:
Basic Books.

Lammers, S. (1986/2006) Programmers at Work. Redmond:
Microsoft Press.

Leder, H. et al. (2004) ‘A Model of Aesthetic Appreciation and
Aesthetic Judgments’, British Journal of Psychology 95: 489-508.

Levinson, J. (ed.) (2003) The Oxford Handbook of Aesthetics. New
York: Oxford University Press. Locher, P., & Nagy, E. (1996)
‘Vision Spontaneously Establishes the Percept of Pictorial Balance’,
Empirical Studies of the Arts 14: 17-31.

Maiden, N., Gizikis, A., & Robertson, S. (2004) ‘Provoking
Creativity: Imagine What your Requirements Could be Like’, IEEE
Software 21: 68-75.

http://www.culturemachine.net/�
http://www.longbets.org/1�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 22

Markman, A. & Brendl, C.M. (2005) ‘Constraining Theories of
Embodied Cognition’, Psychological Science 16: 6-10.

Mauss, M. (1979) Sociology and Psychology. London: Routledge &
Kegan Paul.

McAllister, J. (1996) Beauty and Revolution in Science. Ithaca:
Cornell University Press.

Mohr, M. (1989) ‘Programmed Esthetics’, in Esthetics, contemporary
revised edition, (ed.) R. Kostelanetz. Amherst, NY: Prometheus
Books.

Molzberger, P. (1983) ‘Aesthetics and Programming’, Proceedings of
the SIGCHI conference on Human Factors in Computing Systems 247–
50. Boston.

Niedenthal, P. et al. (2005) ‘Embodiment in Attitudes, Social
Perception, and Emotion’, Personality and Social Psychology Review
9: 184-211.

Oram, A. & Wilson, G. (eds) (2007) Beautiful Code. Sebastopol:
O’Reilly Media.

Otte, W.R. & Schmidt, D. C. (2007) ‘Labor-Saving Architecture: An
Object-Oriented Framework for Networked Software’, in Beautiful
Code, (eds) Oram, A. & Wilson, G. Sebastopol: O’Reilly Media.

Perkins, D. N. (1981) The Mind’s Best Work. Cambridge: Harvard
University Press.

Poster, M. (1990) The Mode of Information. Chicago: The
University of Chicago Press.

Ramón y Cajal, S. (1937/1989) Recollections of My Life. (Translated
by E. H. Craigie and J. Canto). Cambridge, MA: MIT Press.

Root-Bernstein, R. (2002) ‘Aesthetic Cognition’, International
Studies in the Philosophy of Science 16: 61-77.

Rosenberger, S. (1997) ’Elegance and Entropy’,
http://www.salon.com/technology/feature/1997/10/09/interview
/index.html

http://www.culturemachine.net/�
http://www.salon.com/technology/feature/1997/10/09/interview/index.html�
http://www.salon.com/technology/feature/1997/10/09/interview/index.html�

DEXTER et al. • EMBODIED AESTHETICS CM 12 • 2011

www.culturemachine.net • 23

Saito, Y. (2008) Everyday Aesthetics. New York: Oxford University
Press.

Silvia, P. J. & Brown, M. E. (2007) ‘Anger, Disgust, and the Negative
Aesthetic Emotions: Expanding an Appraisal Model of Aesthetic
Experience’, Psychology of Aesthetics, Creativity, and the Arts 1: 100-
106.

Simonton, D. K. (2004) Creativity in Science: Chance, Logic, Genius,
and Zeitgeist. New York: Cambridge University Press.

Snow, C. P. (1960) The Two Cultures. Cambridge: Cambridge
University Press.

Tauber, A. I. (ed.) (1996) The Elusive Synthesis: Aesthetics and
Science. Dordrecht, Netherlands: Kluwer.

Ward, T. B. et al. (eds) (1997) Creative Thought: An Investigation of
Conceptual Structures and Processes. Washington, DC: APA.

Warren, H. S. (2007) ‘The Quest for an Accelerated Population
Count’, in Beautiful Code, (eds) Oram, A. & Wilson, G. Sebastopol:
O’Reilly Media.

Wechsler, J. E. (ed.) (1977) On Aesthetics in Science. Cambridge:
MIT Press.

http://www.culturemachine.net/�

	ON THE EMBODIED AESTHETICS OF CODE
	Scott Dexter, Melissa Dolese,
	Angelika Seidel, Aaron Kozbelt
	Code and aesthetics
	Code and embodiment
	Embodiment and aesthetics
	Synergies
	Endnotes

